-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWFH_geographicComparison.qmd
4163 lines (3201 loc) · 168 KB
/
WFH_geographicComparison.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Working From Home in Illinois: Who Can and Who Does?"
format:
html:
df-print: paged
toc: true
---
```{r setup, warning=FALSE, message=FALSE, include=FALSE}
library(scales)
library(reldist)
library(pollster)
library(labelled)
library(weights)
library(tigris)
library(ipumsr)
library(srvyr)
library(survey)
library(tidyverse)
library(naniar)
library(gmodels)
library(gtsummary)
library(quarto)
library(huxtable) # for summ() and regression output formatting
# Create the DB connection with the default name expected by PTAXSIM functions
library(jtools)
library(modelsummary)
library(car)
knitr::opts_chunk$set(warning=FALSE, message=FALSE, tidy = TRUE)
```
```{r include=FALSE}
Alea_theme <- function(){
theme_classic() %+replace% #replace elements we want to change
theme(
#grid elements
panel.grid.major = element_blank(), #strip major gridlines
panel.grid.minor = element_blank(), #strip minor gridlines
axis.ticks = element_blank(), #strip axis ticks
axis.text.x = element_blank(),
axis.text.y = element_blank(),
#since theme_minimal() already strips axis lines,
#we don't need to do that again
#text elements
plot.title = element_text( #title
size = 14, #set font size
face = 'bold', #bold typeface
hjust = 0, #left align
vjust = 2), #raise slightly
plot.subtitle = element_text( #subtitle
size = 14), #font size
plot.caption = element_text( #caption
size = 9, #font size
hjust = 1), #right align
axis.title = element_text( #axis titles
size = 10), #font size
axis.text = element_text( #axis text
size = 9) #font size
#since the legend often requires manual tweaking
#based on plot content, don't define it here
)
}
```
## ACS Survey Data Notes
IPUMS [link for Survey package](https://usa.ipums.org/usa/repwt.shtml)
Survey questions for EMPSTAT & LABFORCE:
1. Last week, did this person work for pay at a job or business? (Yes or no) -- Yes becomes coded as EMPSTAT = 1-Employed.
2. Last week, did this person do ANY work for pay, even as little as one hour?(Yes or no) -- Yes becomes coded as LABFORCE = 2-Yes in the labor force.
Survey questions for INCEARN:
1. INCEARN = INCWAGE + INCBUS00
- Total amount earned in last 12 months: Wages, salary, commissions, bonuses, tips. \[Yes --\> \_\_\_\_\_\_ \] is coded as INCWAGE value.
- INCEARN includes self-employment income, INCWAGE does not.
- INCWAGE does not include Farming income and self-employment income, but INCEARN does.
`usa_00011.xml` and `usa_00011.dat.gz` are the same as Box files named `IL_2021_1yr_ACS.dat.gz` and `IL_2021_1yr_ACS_datDDI.xml`
> original xml file references the file name that it is called in the download. Either change the XML file to reference the correct .dat.gz files OR just keep track of which extracts are the same as the box file names.
```{r message=FALSE, warning = FALSE}
# old version with less variables:
#ddi <- read_ipums_ddi("usa_00009.xml") # 45 variables
#data <- read_ipums_micro(ddi) # 126623 observations before any filtering
# larger version with 147 variables. uses same file as Box file named "IL_2021_1yr_ACS.dat.gz and IL_2021_1yr_ACS_datDDI.xml
ddi <- read_ipums_ddi("./data/usa_00011.xml") # downloaded April 10 2023
data2021 <- read_ipums_micro(ddi) # 126623 observations before any filtering
data2021 <- data2021 %>% select(YEAR, INCEARN, INCWAGE, INCTOT, TRANWORK, OCCSOC, CLASSWKR, EMPSTAT, LABFORCE, PERWT, COUNTYFIP, PUMA, PWSTATE2, AGE, STRATA, CLUSTER, RACE, HISPAN, SEX, CIHISPEED, CINETHH, MULTGEN, NCHILD, NCHLT5, MARST, FERTYR, EDUC, DEGFIELD, OCC, IND, OCC2010, METRO, CITY, HHINCOME, SERIAL,HHWT, NUMPREC, SUBSAMP,HHTYPE )
# same sample but with 150+ variables.
# NEED TO CHANGE XML file that references the data file. currently says usa_00011.dat.gz so these two lines of code do not work.
ddi <- read_ipums_ddi("./data/IL_2019_1yearACS_datDDI.xml") # downloaded April 10 2023
data2019 <- read_ipums_micro(ddi) # 126623 observations before any filtering
data2019 <- data2019 %>% select(YEAR, INCEARN, INCWAGE, INCTOT, TRANWORK, OCCSOC, CLASSWKR, EMPSTAT, LABFORCE, PERWT, COUNTYFIP, PUMA, PWSTATE2, AGE, STRATA, CLUSTER, RACE, HISPAN, SEX, CIHISPEED, CINETHH, MULTGEN, NCHILD, NCHLT5, MARST, FERTYR, EDUC, DEGFIELD, OCC, IND, OCC2010, METRO, CITY, HHINCOME, SERIAL,HHWT, NUMPREC, SUBSAMP,HHTYPE )
data <- rbind(data2019, data2021) #125,007 observations before any filtering.
# replaces 0 with NA for variables listed. Allows topline to calculate "Valid Percent" when it recognizes missing values
data <- data %>% replace_with_na(replace = list(
EMPSTAT= c(0),
LABFORCE=c(0),
CLASSWKR = c(0),
OCCSOC = c(0),
CIHISPEED = c(0),
CINETHH = c(0),
TRANWORK = c("N/A","0"))) %>%
filter(LABFORCE == 2 & INCEARN > 0) # in labor force and 18 years old and up abd positive earned incomes.
data <- data %>% mutate(age_cat =
case_when(AGE < 24 ~ "16to24",
AGE > 24 & AGE < 35 ~ "25to34",
AGE > 34 & AGE < 45 ~ "35to44",
AGE > 44 & AGE < 55 ~ "45to54",
AGE > 54 & AGE < 65 ~ "55to64",
AGE > 64 ~ "65+"))
data <- data %>% mutate(white = if_else(RACE ==1, 1, 0),
black = if_else(RACE ==2, 1, 0),
asian = if_else(RACE %in% c(4,5,6), 1, 0),
otherrace = if_else(RACE %in% c(3,7,8,9),1,0)) %>%
group_by(COUNTYFIP,PUMA) %>%
mutate(pct_white = sum(white)/n(),
pct_black = sum(black)/n()) %>%
ungroup() %>%
mutate(race_cat = case_when(
RACE ==1~"White",
RACE ==2 ~ "Black",
RACE %in% c(4,5,6)~"Asian",
RACE %in% c(3,7,8,9)~"Other"))
## numbers used for income breaks are calculated in Income Deciles section.
# created now so that the variable exists in the joined dataset before creating the survey design object
data <- data %>%
mutate(incdecile_w = case_when(
INCEARN < 8000 ~ 1,
INCEARN >= 8000 & INCEARN < 18000 ~ 2,
INCEARN >= 18000 & INCEARN < 26000 ~ 3,
INCEARN >= 26000 & INCEARN < 35000 ~ 4,
INCEARN >= 35000 & INCEARN < 43000 ~ 5,
INCEARN >= 43000 & INCEARN < 54000 ~ 6,
INCEARN >= 54000 & INCEARN < 68000 ~ 7,
INCEARN >= 68000 & INCEARN < 85000 ~ 8,
INCEARN >= 85000 & INCEARN < 120000 ~ 9,
INCEARN >= 120000 ~ 10)
) %>%
## Padding FIPS code for merging with spatial geometry later
mutate(county_pop_type = if_else(COUNTYFIP==0,
"Rural Counties", "Urban Counties")) %>%
mutate(PUMA = str_pad(PUMA, 5, pad="0"),
countyFIP = str_pad(COUNTYFIP, 3, pad = "0"))
data <- data %>%
mutate(occ_2digits = substr(OCCSOC,1,2)) %>%
mutate(occ_2dig_labels = case_when(
occ_2digits %in% c(11,13,19,15,17,19,21,23,25,27,29) ~ "Management, Business, Science, Arts",
occ_2digits %in% c(31,32,33,34,35,36,37,38,39) ~ "Service Occupations",
occ_2digits %in% c(41,42,43) ~ "Sales & Office Jobs",
occ_2digits %in% c(45,46,47,48,49 ) ~"Natural Resources, Construction",
occ_2digits %in% c(51, 52, 53) ~ "Production, Transportation",
occ_2digits == 55 ~ "Military"))
data <- data %>%
mutate(occ_2digits = substr(OCCSOC,1,2)) %>%
mutate(occ_2dig_labels_d = case_when(
occ_2digits %in% c(11) ~ "Management",
occ_2digits %in% c(13) ~ "Business & Finance",
occ_2digits %in% c(15) ~ "Computer, Engineering & Science",
occ_2digits %in% c(17) ~ "Architecture & Engineering",
occ_2digits %in% c(19) ~ "Life/Social Sciences",
occ_2digits == 21 ~ "Community & Social Services",
occ_2digits == 23 ~ "Legal",
occ_2digits == 25 ~ "Educational Instruction",
occ_2digits == 27 ~ "Arts, Design, Entertainainment",
occ_2digits == 29 ~ "Health Practictioners",
occ_2digits == 31 ~ "Healthcare Support",
occ_2digits == 33 ~ "Protective services",
occ_2digits == 35 ~ "Food Services",
occ_2digits == 37 ~ "Building Cleaning & Maintenance",
occ_2digits == 41 ~ "Sales",
occ_2digits == 43 ~"Office & Administration",
occ_2digits == 45 ~ "Farm, Fish, Forest",
occ_2digits == 47 ~ "Construction & Extraction",
occ_2digits == 49 ~"Installation, Maintenance",
occ_2digits == 51 ~"Production",
occ_2digits == 53 ~ "Transportation & Material Moving",
occ_2digits == 55 ~ "Military",
TRUE~"Other") )
data <- data %>%
mutate(did_wfh = if_else(TRANWORK==80, 1, 0)) # 1 = wfh, 0 = did not wfh
data <- data %>%
mutate(
PWSTATE2 = ifelse(PWSTATE2 == 0, NA, PWSTATE2),
work_in_IL = ifelse(PWSTATE2 == "17", "In Illinois", "Out of IL"),
did_wfh_labels = ifelse(did_wfh == 1, "Did WFH", "Did not WFH"),
has_incearn = ifelse(INCEARN > 0, 1, 0), ## has earned income = 1
has_occsoc = ifelse(OCCSOC > 0, 1, 0),# has occupation = 1
has_incearn_labels = ifelse(INCEARN > 0, "Has EarnInc", "No IncData"), ## has earned income = 1
has_occsoc_labels = ifelse(OCCSOC > 0, "Has Occ", "No Occ") ## OCCSOC code greater than zero coded as 1
)
rm(ddi)
rm(data2019)
rm(data2021)
```
## Descriptive Statistics
251630 observations originally in ACS 2021 and 2019 1-year samples.
123,753 observations after removing those not in the labor force and with earned incomes less than or equal to zero.
::: {.callout-warning appearance="simple" icon="false"}
Note: Dropping groups of people using filter() from the sample will change the standard errors of estimates since it changes the sample size. Use the survey() or svy() command to drop subsets of people (like if we wanted to filter age groups). Google what commands to use to drop observations without impacting standard errors.
:::
```{r examine-didwfh}
# data %>%
# group_by(YEAR, did_wfh) %>%
# dplyr::summarize(weightedcount=sum(PERWT),
# unweightedcount = n()) %>% #weighted
# mutate(pct_weighted = round(weightedcount/sum(weightedcount), digits = 3),
# pct_noweight = round(unweightedcount/sum(unweightedcount), digits = 3))
#valid percent BEFORE final filtering of observations (income greater than zero)
data %>% filter(YEAR == 2019) %>%
topline(did_wfh_labels, weight = PERWT)
data %>% filter(YEAR == 2021) %>%
topline(did_wfh_labels, weight = PERWT)
```
18.2% of Illinois workers worked at home. 76.3% went to work using some form of transportation, 5.5% of observations were missing values.
- **Valid percent:** 19.2% of observations with responses did WFH and 80.8% of observations with responses did not WFH. **This is the statistic we would use**
- Increased from 5.3% of all workers that worked from home in 2019
```{r could-wfh}
# bring in the teleworkable scores based on D&N's work.
telework <- read_csv("./data/teleworkable_AWM.csv")
joined <- left_join(data, telework, by = c("OCCSOC" = "occ_codes"))
#May 22 2023, Changed 399011 occupation to 0. Was coding Nannies and Child care as teleworkable.
joined <- joined %>% mutate(teleworkable = ifelse(OCCSOC == "399011" | OCCSOC == "399010", 0, teleworkable))
#table(joined$teleworkable)
# mostly 0's and 1's.
#hist(joined$teleworkable)
joined <- joined %>%
mutate(CanWorkFromHome = case_when(
teleworkable == 0 ~ "No WFH",
teleworkable < 1 ~ "Some WFH",
teleworkable == 1 ~ "Can WFH",
TRUE ~ "Check Me")) %>%
# keeps observations that have earned income values and are in the labor force.
filter(has_incearn == 1 & LABFORCE == 2)
table(joined$CanWorkFromHome)
table(joined$did_wfh, joined$YEAR)
```
```{r eval=FALSE, include=FALSE}
# checks to make sure percentages calculated using joined dataframe are the same as the data dataframe.
#valid percent
joined %>% filter(YEAR == 2019) %>%
topline(did_wfh_labels, weight = PERWT)
joined %>% filter(YEAR == 2021) %>%
topline(did_wfh_labels, weight = PERWT)
# data %>%
# group_by(YEAR, did_wfh) %>%
# dplyr::summarize(weightedcount=sum(PERWT),
# unweightedcount = n()) %>% #weighted
# mutate(pct_weighted = round(weightedcount/sum(weightedcount), digits = 3),
# pct_noweight = round(unweightedcount/sum(unweightedcount), digits = 3))
```
**Pre 5.23.2023**: 40,278 observations have occupations that indicate that they could Work from home, 67,339 responses have occupations indicating that they can not work from home, 16,136 might be able to work from home.
**5.23.2023**: 41,643 can wfh; 66111 no wfh possible, 15,999 some wfh
### Survey Design
There are three different versions of the data: dstrata has both 2019 and 2021 data together (combined using rbind() above.) Using this combined design object makes some graphs easier, but I think it changes any standard errors used in estimate. I also made the 2019 and 2021 design strata from the the separate survey data. They all should have the same variables.
> After comparing the 2021 5-year sample, it is possible to just use that 5-year sample download and use only the 2019 and 2021 years of observations. This automatically adjusts the dollar amounts to 2021 dollars. It is also possible to use Pre-COVID and post-COVID years to have even more observations. (pre-covid would be 2017,2018, and 2019, post-covid would be 2020, 2021)
Deciles were created from the strata in different ways below. Depending on age ranges kept, deciles shift slightly.
2019 Strata by itself:\
4 9000 17000 25000 32000 40000 50000 63000 80000 114000 933000
2019 Strata income decile breaks (using the 2021 5-year extract):\
4 9538 18016 26494 33912 42390 52988 66765 84781 121873 988757.\
**Already adjusted for inflation??????**
- 9000, 9400, 25000, 32000, 40000, 50000, 63000, 80000, 1140000, 949000
- 8000, 18000, 26000, 35000, 43000, 54000, 68000, 85000, 120000
\
::: {.callout-warning appearance="simple" icon="false"}
survey::svyquantile() uses the survey design to calculate deciles. These deciles that are created are slightly different than the deciles assigned using ntile(). I trust survey::svyquantile more because I know it applies the weights to observations when creating the deciles for earned income.
:::
::: {.callout-important appearance="minimal" icon="false"}
the ntile() decile variable is what is used to graph all decile images and for all income decile tables/calculations. ~~Find a way to apply the summarized version of the svyquantiles as a new variable in the dstrata datasets.~~ - Done.
`incdecile_w` is made using the breaks returned from the svyquantile command.
- ~~now use this variable in graphs? or create the summary tables using weights and then pass that to the graph commands.~~ - done
:::
```{r survey-design, message = FALSE, warning=FALSE}
#as_survey() from srvyr package
## both years together: calculations using this will have incorrect standard errors
# might be easier sometimes to graph together. Maybe.
joined <- joined %>% filter(HHINCOME > 0 & HHINCOME!= 9999999 & HHINCOME != 9999998) # 105 observations
joined <- joined %>%
mutate(HHincdecile_w = case_when(
INCEARN < 34000 ~ 1,
INCEARN >= 34000 & INCEARN < 51900 ~ 2,
INCEARN >= 51900 & INCEARN < 68000 ~ 3,
INCEARN >= 68000 & INCEARN < 83600 ~ 4,
INCEARN >= 83699 & INCEARN < 100000 ~ 5,
INCEARN >= 100000 & INCEARN < 120000 ~ 6,
INCEARN >= 120000 & INCEARN < 142400 ~ 7,
INCEARN >= 142400 & INCEARN < 175000 ~ 8,
INCEARN >= 175000 & INCEARN < 235000 ~ 9,
INCEARN >= 235000 ~ 10)
)
dstrata <- survey::svydesign(id = ~CLUSTER, strata = ~STRATA, weights = ~PERWT, data = joined) %>%
as_survey() %>%
mutate(decile = ntile(INCEARN, 10))
# 2019 data turned into survey item
dstrata2019 <- joined %>% filter(YEAR==2019)
dstrata2019 <- survey::svydesign(id = ~CLUSTER, strata = ~STRATA,
weights = ~PERWT, data = dstrata2019) %>%
as_survey() %>%
mutate(decile = ntile(INCEARN, 10))
dstrata2021 <- joined %>% filter(YEAR==2021)
dstrata2021 <- survey::svydesign(id = ~CLUSTER, strata = ~STRATA, weights = ~PERWT, data = dstrata2021) %>% as_survey() %>%
mutate(decile = ntile(INCEARN, 10))
# deciles using ntile(). Not weighted!! Close to income deciles from weighted suvey design though.
```
```{r export-occ-matched-csv, eval=FALSE, include=FALSE}
#Tables for Appendix Items with counts of observations by OCC types:
all_occs <- joined %>%
filter(YEAR == 2021)%>%
group_by(OCCSOC) %>%
summarize(count_matched = n(),
weighted_estimate = sum(PERWT)) %>%
mutate(perc_responses = scales::percent(count_matched/sum(count_matched)),
perc_workforce =scales::percent(weighted_estimate/sum(weighted_estimate)))
occs_23cat <-joined %>%
filter(YEAR == 2021)%>%
dplyr::group_by(occ_2digits,occ_2dig_labels_d) %>%
dplyr::summarize(
count_matched = n(),
weighted_estimate = sum(PERWT),
avg_teleworkable = mean(teleworkable)) %>%
ungroup() %>%
mutate(perc_responses = count_matched/sum(count_matched),
perc_workforce = weighted_estimate/sum(weighted_estimate)) %>% arrange(-count_matched)
occ_5cat <- joined %>%
filter(YEAR == 2021)%>%
dplyr::group_by(occ_2dig_labels) %>%
dplyr::summarize(
count_matched = n(),
weighted_estimate = sum(PERWT),
avg_teleworkable = mean(teleworkable)) %>%
ungroup() %>%
mutate(perc_responses = count_matched/sum(count_matched),
perc_workforce = weighted_estimate/sum(weighted_estimate)) %>% arrange(-count_matched)
#install.packages("openxlsx")
library(openxlsx)
dataset_names <- list('All Matched OCC Codes' = all_occs,
'5 Broadest OCC Groups' = occ_5cat,
'OCC 2-digit Groups'= occs_23cat
)
write.xlsx(dataset_names, file = 'WFH_feasibility_comparison_AWM.xlsx')
```
## Comparison of Women w/ & w/o Kids under 5
Women under 40 who could work from home in the occupation category with large amount of people who could work from home (Management, Business, Science & Arts, all SOC 2-digit codes \< 30-0000)
Under5 is binary variable: 0 means no children under 5. 1 means at least 1 or more children under 5.
318,174 women in 2019 worked from home and 1,140,835 women in 2021 worked from home.
```{r}
childttest2021<-joined %>%
filter(YEAR == 2021)%>%
filter(SEX == 2 & AGE < 40) %>%
filter(CanWorkFromHome == "Can WFH" & occ_2digits <30) %>%
mutate(under5 = ifelse(NCHLT5 > 0, 1, 0))
write.csv(childttest2021, "with_kids_comparison.csv")
childttest2019<-joined %>%
filter(YEAR == 2019)%>%
filter(SEX == 2 & AGE < 40) %>%
filter(CanWorkFromHome == "Can WFH" & occ_2digits <30) %>%
mutate(under5 = ifelse(NCHLT5 > 0, 1, 0))
kidsdesign <- survey::svydesign(id = ~CLUSTER, strata = ~STRATA, weights = ~PERWT, data = childttest2021)
kidsdesign2 <- survey::svydesign(id = ~CLUSTER, strata = ~STRATA, weights = ~PERWT, data = childttest2019)
#withkids <- childttest %>% filter(under5 == 1)
#table(withkids$did_wfh_labels)
#nokids <- childttest %>% filter(under5==0)
#table(nokids$did_wfh_labels)
svytable(~under5+did_wfh_labels, kidsdesign)
svytable(~under5+did_wfh_labels, kidsdesign) %>% as_tibble() %>%
# group_by(did_wfh_labels) %>%
mutate(Prop = round(n/sum(n), digits =3))
svytable(~under5+did_wfh_labels, kidsdesign) %>% summary()
# also chi square test?
svychisq(~under5+did_wfh_labels, kidsdesign, statistic = "Chisq")
# t-test between with kids and without kids group. Weighted.
# t-test probably isn't right because it isn't a continuous variable.
# svyttest(under5~did_wfh, kidsdesign)
#svytable(~did_wfh_labels+YEAR+under5, design = dstrata)
svytable(~under5+did_wfh_labels, design = kidsdesign) %>% summary()
svytable(~under5+did_wfh_labels, design = kidsdesign2) %>% summary()
#svychisq(under5~did_wfh_labels, design = kidsdesign)
#crosstab(did_wfh_labels, under5, weight = PERWT, unwt_n = TRUE, df = childttest2021)
#crosstab(did_wfh_labels,under5, weight = PERWT, unwt_n = TRUE, df = childttest2019)
### Switch variable order.
crosstab(under5, did_wfh_labels, weight = PERWT, unwt_n = TRUE, df = childttest2021)
crosstab(under5,did_wfh_labels, weight = PERWT, unwt_n = TRUE, df = childttest2019)
#crosstab_3way(YEAR, under5, did_wfh_labels, weight = PERWT, unwt_n = TRUE, df = childttest#, pct_type = "cell")
#glm(did_wfh~under5, data = childttest2021) %>% summary()
#svyglm(did_wfh~under5, design = kidsdesign) %>% summary()
```
For men in 2019, 7.1% of men without kids worked from home. 7.6% of men with kids worked from home.
2019:\
21.8% of men who did not WFH had kid under 5.\
22.8% of men who did WFH had a kid under 5.\
7.2% of men who did not have kids under 5 worked from home.\
7.6% of men with kids under 5 worked from home.
In 2019:\
22% of women who did not WFH had a kid under 5.\
24% of women who did WFH had a kid under 5.\
5% of women without children under 5 worked from home.\
9% of women with children under 5 worked from home.
In 2021:\|\
21% of women who did not WFH had a kid under 5.\
34% of women who did WFH had a kid under 5.\
34% of women without children under 5 worked from home.\
37% of women with children under 5 worked from home.
2021:\
20.4% of men who did not work from home had kids under 5.\
20.45% of men who did work from home had kids under 5.\
40.45% of men without kids under 5 worked from home.\
40.55% of men with kids under 5 worked from home.
Not a statistically significant difference but still interesting.
**For women under 45:**
```{r}
childttest2021<-joined %>%
filter(YEAR == 2021)%>%
filter(SEX == 2 & AGE < 45) %>%
filter(CanWorkFromHome == "Can WFH" & occ_2digits <30) %>%
mutate(under5 = ifelse(NCHLT5 > 0, 1, 0))
childttest2019<-joined %>%
filter(YEAR == 2019)%>%
filter(SEX == 2 & AGE < 45) %>%
filter(CanWorkFromHome == "Can WFH" & occ_2digits <30) %>%
mutate(under5 = ifelse(NCHLT5 > 0, 1, 0))
kidsdesign <- survey::svydesign(id = ~CLUSTER, strata = ~STRATA, weights = ~PERWT, data = childttest2021)
#withkids <- childttest %>% filter(under5 == 1)
#table(withkids$did_wfh_labels)
#nokids <- childttest %>% filter(under5==0)
#table(nokids$did_wfh_labels)
svytable(~under5+did_wfh_labels, kidsdesign)
svychisq(~under5+did_wfh_labels, kidsdesign)
svyttest(under5~did_wfh, kidsdesign)
#svytable(~did_wfh_labels+YEAR+under5, design = dstrata)
#svytable(~under5+YEAR+did_wfh_labels, design = dstrata)
#svychisq(did_wfh_labels~under5+YEAR, design = dstrata)
#crosstab(did_wfh_labels, under5, weight = PERWT, unwt_n = TRUE, df = childttest2021)
#crosstab(did_wfh_labels,under5, weight = PERWT, unwt_n = TRUE, df = childttest2019)
#crosstab_3way(YEAR, under5, did_wfh_labels, weight = PERWT, unwt_n = TRUE, df = childttest#, pct_type = "cell")
#glm(did_wfh~under5, data = childttest2021) %>% summary()
```
**For MEN under 40:**
In 2019:\
20.8% who did not WFH had a kid under 5.\
21.5% who did WFH had a kid under 5.
In 2021: 22% of men that did and did not WFH had a kid under 5.
```{r}
childttest2021<-joined %>%
filter(YEAR == 2021)%>%
filter(SEX == 1 & AGE < 40) %>%
filter(CanWorkFromHome == "Can WFH" & occ_2digits <30) %>%
mutate(under5 = ifelse(NCHLT5 > 0, 1, 0))
write.csv(childttest2021, "with_kids_comparison.csv")
childttest2019<-joined %>%
filter(YEAR == 2019)%>%
filter(SEX == 1 & AGE < 40) %>%
filter(CanWorkFromHome == "Can WFH" & occ_2digits <30) %>%
mutate(under5 = ifelse(NCHLT5 > 0, 1, 0))
kidsdesign <- survey::svydesign(id = ~CLUSTER, strata = ~STRATA, weights = ~PERWT, data = childttest2021)
kidsdesign2 <- survey::svydesign(id = ~CLUSTER, strata = ~STRATA, weights = ~PERWT, data = childttest2019)
#withkids <- childttest %>% filter(under5 == 1)
#table(withkids$did_wfh_labels)
#nokids <- childttest %>% filter(under5==0)
#table(nokids$did_wfh_labels)
svytable(~under5+did_wfh_labels, kidsdesign)
svytable(~under5+did_wfh_labels, kidsdesign) %>% as_tibble() %>%
# group_by(did_wfh_labels) %>%
mutate(Prop = round(n/sum(n), digits =3))
svytable(~under5+did_wfh_labels, kidsdesign) %>% summary()
# also chi square test?
svychisq(~under5+did_wfh_labels, kidsdesign, statistic = "Chisq")
# t-test between with kids and without kids group. Weighted.
# t-test probably isn't right because it isn't a continuous variable.
# svyttest(under5~did_wfh, kidsdesign)
#svytable(~did_wfh_labels+YEAR+under5, design = dstrata)
svytable(~under5+did_wfh_labels, design = kidsdesign) %>% summary()
svytable(~under5+did_wfh_labels, design = kidsdesign2) %>% summary()
#svychisq(under5~did_wfh_labels, design = kidsdesign)
#crosstab(did_wfh_labels, under5, weight = PERWT, unwt_n = TRUE, df = childttest2021)
#crosstab(did_wfh_labels,under5, weight = PERWT, unwt_n = TRUE, df = childttest2019)
### Switch variable order.
crosstab(under5, did_wfh_labels, weight = PERWT, unwt_n = TRUE, df = childttest2021)
crosstab(under5,did_wfh_labels, weight = PERWT, unwt_n = TRUE, df = childttest2019)
#crosstab_3way(YEAR, under5, did_wfh_labels, weight = PERWT, unwt_n = TRUE, df = childttest#, pct_type = "cell")
#glm(did_wfh~under5, data = childttest2021) %>% summary()
#svyglm(did_wfh~under5, design = kidsdesign) %>% summary()
```
**For MEN under 45:**
```{r}
childttest2021<-joined %>%
filter(YEAR == 2021)%>%
filter(SEX == 1 & AGE < 45) %>%
filter(CanWorkFromHome == "Can WFH" & occ_2digits <30) %>%
mutate(under5 = ifelse(NCHLT5 > 0, 1, 0))
childttest2019<-joined %>%
filter(YEAR == 2019)%>%
filter(SEX == 1 & AGE < 45) %>%
filter(CanWorkFromHome == "Can WFH" & occ_2digits <30) %>%
mutate(under5 = ifelse(NCHLT5 > 0, 1, 0))
kidsdesign <- survey::svydesign(id = ~CLUSTER, strata = ~STRATA, weights = ~PERWT, data = childttest2021)
#withkids <- childttest %>% filter(under5 == 1)
#table(withkids$did_wfh_labels)
#nokids <- childttest %>% filter(under5==0)
#table(nokids$did_wfh_labels)
svytable(~under5+did_wfh_labels, kidsdesign)
svychisq(~under5+did_wfh_labels, kidsdesign)
svyttest(under5~did_wfh, kidsdesign)
#svytable(~did_wfh_labels+YEAR+under5, design = dstrata)
#svytable(~under5+YEAR+did_wfh_labels, design = dstrata)
#svychisq(did_wfh_labels~under5+YEAR, design = dstrata)
crosstab(did_wfh_labels, under5, weight = PERWT, unwt_n = TRUE, df = childttest2021)
crosstab(did_wfh_labels,under5, weight = PERWT, unwt_n = TRUE, df = childttest2019)
#crosstab_3way(YEAR, under5, did_wfh_labels, weight = PERWT, unwt_n = TRUE, df = childttest#, pct_type = "cell")
glm(did_wfh~under5, data = childttest2021) %>% summary()
```
## Household data
hhbreaks2019 = (32100, 50000, 65600, 80500, 97300, 115700, 137500, 168000, 225010) and max is 1671000
hhbreaks2021 = (34000, 51900, 68000, 83600, 1e+05 120,000 142,400 175,000 235,000) and max is 1,797,000.
```{r}
#| code-fold: true
#| output: hold
joined <- joined %>% filter(HHINCOME > 0 & HHINCOME!= 9999999 & HHINCOME != 9999998) # 105 observations
joined %>%
ggplot() + geom_histogram(aes(x=HHINCOME, weight = HHWT))
joined %>% # 122000 observations
ggplot() + geom_histogram(aes(x=HHINCOME))
HHdesign <- survey::svydesign(id = ~CLUSTER, strata = ~STRATA, weights = ~HHWT, data = joined)
inc_quantiles <-survey::svyquantile(~HHINCOME, design=HHdesign,
quantiles = c(0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1) ,
na.rm=TRUE, ci = FALSE )
inc_quantiles
# With HH Weights: 4 32900 50000 66600 82000 99000 117000 140000 171000 230000 1797000
# With WRONG weights: (34000, 51900, 68000, 83600, 1e+05 120,000 142,400 175,000 235,000
#Code done above when creating variables in beginning chunks.
joined <- joined %>%
mutate(HHincdecile_w = case_when(
INCEARN < 32900 ~ 1,
INCEARN >= 32900 & INCEARN < 50000 ~ 2,
INCEARN >= 50000 & INCEARN < 66600 ~ 3,
INCEARN >= 66600 & INCEARN < 82000 ~ 4,
INCEARN >= 82000 & INCEARN < 99000 ~ 5,
INCEARN >= 99000 & INCEARN < 117000 ~ 6,
INCEARN >= 117000 & INCEARN < 140000 ~ 7,
INCEARN >= 140000 & INCEARN < 171000 ~ 8,
INCEARN >= 171000 & INCEARN < 230000 ~ 9,
INCEARN >= 230000 ~ 10)
)
HHdesign <- survey::svydesign(id = ~CLUSTER, strata = ~STRATA, weights = ~HHWT, data = joined)
table <- svytable(~YEAR+HHincdecile_w+did_wfh_labels, design = HHdesign)
table <- table %>%
as_tibble() %>%
group_by(YEAR,HHincdecile_w)%>%
mutate(Prop=round(n/sum(n), digits=3)) %>%
filter(did_wfh_labels == "Did WFH")
table # has proportions calculated out of TOTAl for both years
table %>%
ggplot(aes(factor(HHincdecile_w, levels = c(1,2,3,4,5,6,7,8,9,10), labels = c("Bottom 10%", "20%", "30%", "40%", "50%", "60%", "70%", "80%", "90%", "Top 10%")),
y=Prop, fill = YEAR, group = factor(YEAR, levels = "2021","2019"))) +
geom_col(stat="identity", position = "dodge")+
#geom_col(stat = "identity", position = "stack") + # scale_x_discrete(limits = c("Bottom 10%", "20%", "30%", "40%", "50%", "60%", "70%", "80%", "90%", "Top 10%"))+
# facet_wrap(~YEAR)+
coord_flip()+
geom_text(aes(label = scales::percent(Prop, accuracy = 0.1L)), position = position_dodge(width = 0.8), hjust = 1.1,
size = 4) +
labs(title ="Percent of each HOUSEHOLD income decile that did WFH",
subtitle = "2019 vs 2021",
caption = "ACS 1 year samples for 2019 and 2021. Working from home based on TRANWORK question on commuting and HHINCOME variable.
All workers in the labor force, all ages included.
Income based on HHINCOME for household income of survey respondents.",
x= "Income Deciles",
y = "Percent of workers working from home") +
theme(legend.position = "bottom", legend.title = element_blank())+
theme_classic()+
scale_fill_manual(values = c("#a6bddb", "#2b8cbe")) +
scale_y_continuous(labels = scales::percent)
```
## Individual Level Data
### Occupations
Combined into 6 major occupation groups. Broadest categories are made up of multiple 2-digit OCCSOC codes.
```{r}
#| label: fig-A2-Figure1
#| fig-cap: "Proportion of Occupation Types in Illinois by Aggregated Occupation Groups used by BLS & ACS"
#| fig-subcap: "ACS 1 year samples for 2019 and 2021 used for weighted population estimates. Military occupations make up less than 0.5% of the labor force and were removed from the graph. Occupation categories are based on broadest aggregated BLS categories used by the BLS."
#| code-fold: true
#table includes observations from BOTH years.
#table(joined$occ_2dig_labels, joined$did_wfh_labels)
#table(joined$occ_2digits)
crosstab_3way(joined, YEAR, occ_2dig_labels, did_wfh_labels, weight = PERWT)
table <- svytable(~YEAR+occ_2dig_labels, design = dstrata)
table <- table %>%
as_tibble() %>%
group_by(YEAR)%>%
mutate(Prop =round(n/sum(n), digits=3)) %>%
arrange(-n)
table
table %>% filter(occ_2dig_labels != "Military") %>% ggplot(aes(x=fct_rev(fct_inorder(occ_2dig_labels)), y=n, group = YEAR)) +
geom_col(stat = "identity", fill="lightblue") +
facet_wrap(~YEAR)+
geom_text(aes(label = scales::percent(as.numeric(ifelse(Prop>0.02,Prop, "")), accuracy = .1),accuracy = .1L ),position = position_stack(vjust=.5), size=3) +
theme_classic() +
theme(legend.position = "bottom", legend.title = element_blank(),
panel.background = element_rect(fill='transparent'),
plot.background = element_rect(fill='transparent', color=NA),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.background = element_rect(fill='transparent'),
legend.box.background = element_rect(fill='transparent')
)+
labs(
title ="Proportion of Occupation Types in Illinois",
subtitle = "By Most Aggregated Occupation Groups used by BLS & ACS",
x = "", y = "Estimated Number of Workers")+
scale_y_continuous(labels = scales::comma)+
scale_x_discrete(labels = function(x) str_wrap(x, width=25))+ # makes labels better on axsis
coord_flip()
```
```{r export-figA2-Fig1, include = FALSE}
table %>% filter(occ_2dig_labels != "Military") %>% ggplot(aes(x=fct_rev(fct_inorder(occ_2dig_labels)), y=n, group = YEAR)) +
geom_col(stat = "identity", fill="lightblue") +
facet_wrap(~YEAR)+
geom_text(aes(label = scales::percent(as.numeric(ifelse(Prop>0.02,Prop, "")), accuracy = .1),accuracy = .1L ),position = position_stack(vjust=.5), size=3) +
theme_classic() +
theme(legend.position = "bottom", legend.title = element_blank(),
panel.background = element_rect(fill='transparent'),
plot.background = element_rect(fill='transparent', color=NA),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.background = element_rect(fill='transparent'),
legend.box.background = element_rect(fill='transparent')
)+
labs(
# title ="Proportion of Occupation Types in Illinois",
# subtitle = "By Most Aggregated Occupation Groups used by BLS & ACS",
x = "", y = "Estimated Number of Workers")+
scale_y_continuous(labels = scales::comma)+
scale_x_discrete(labels = function(x) str_wrap(x, width=25))+ # makes labels better on axsis
coord_flip()
ggsave("./paper_figures/A2-Figure1.png", limitsize = FALSE, width = 8, height = 4, units = "in")
ggsave("./paper_figures/A2-Figure1.eps", limitsize = FALSE, width = 8, height = 4, units = "in")
```
ACS 1 year samples for 2019 and 2021 used for weighted population estimates. Military occupations make up less than 0.5% of the labor force and were removed from the graph. Occupation categories are based on broadest aggregated BLS categories used by the BLS.
```{r}
#| label: fig-A2-Figure2
#| fig-cap: "ACS 1 year samples for 2019 and 2021 used for weighted population estimates. Occupation categories based on first 2 digits of OCCSOC occupation codes. Labels for occupations that make up less than 2% of the workers were not labeled for legibility reasons."
### Proportion of All Workers in each Occupation Type ###
table <- svytable(~YEAR+occ_2dig_labels_d, design = dstrata)
table <- table %>%
as_tibble() %>%
group_by(YEAR)%>%
mutate(Prop =round(n/sum(n), digits=3)) %>%
arrange(-n)
table
table %>% ggplot(aes(x=fct_rev(fct_inorder(occ_2dig_labels_d)), y=n, group = YEAR)) +
geom_col(stat = "identity", fill="lightblue") +
facet_wrap(~YEAR)+
geom_text(aes(label = scales::percent(as.numeric(ifelse(Prop>0.02,Prop, "")), accuracy = .1),accuracy = .1L ),position = position_stack(vjust=.5), size=3) +
theme_classic() +
theme(legend.position = "bottom", legend.title = element_blank(),
panel.background = element_rect(fill='transparent'),
plot.background = element_rect(fill='transparent', color=NA),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.background = element_rect(fill='transparent'),
legend.box.background = element_rect(fill='transparent')
)+
labs(title ="Occupations in Illinois",
#subtitle = "Little change between 2019 and 2021 Occurred",
x = "", y = "Estimated Number of Workers") + scale_y_continuous(labels = scales::comma)+
coord_flip()
```
```{r export-A1figure2, include = FALSE}
### Proportion of All Workers in each Occupation Type ###
table <- svytable(~YEAR+occ_2dig_labels_d, design = dstrata)
table <- table %>%
as_tibble() %>%
group_by(YEAR)%>%
mutate(Prop =round(n/sum(n), digits=3)) %>%
arrange(-n)
table
table %>% ggplot(aes(x=fct_rev(fct_inorder(occ_2dig_labels_d)), y=n, group = YEAR)) +
geom_col(stat = "identity", fill="lightblue") +
facet_wrap(~YEAR)+
geom_text(aes(label = scales::percent(as.numeric(ifelse(Prop>0.02,Prop, "")), accuracy = .1),accuracy = .1L ),position = position_stack(vjust=.5), size=3) +
theme_classic() +
theme(legend.position = "bottom", legend.title = element_blank(),
panel.background = element_rect(fill='transparent'),
plot.background = element_rect(fill='transparent', color=NA),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.background = element_rect(fill='transparent'),
legend.box.background = element_rect(fill='transparent')
) +
labs(#title ="WFH Feasibility by Occupation Type",
x = "", y = "Estimated Number of Workers") +
scale_y_continuous(labels = scales::comma)+
coord_flip()
ggsave("./paper_figures/A2-Figure2.png", limitsize = FALSE,width = 8, height = 4, units = "in")
ggsave("./paper_figures/A2-Figure2.eps", limitsize = FALSE,width = 8, height = 4, units = "in")
```
```{r}
### Percent of Workers working from home within each Broad Occupation type ###
table <- svytable(~YEAR+did_wfh_labels+occ_2dig_labels, design = dstrata)
table <- table %>%
as_tibble() %>%
group_by(YEAR, occ_2dig_labels)%>%
mutate(Prop =round(n/sum(n), digits=3)) %>%
arrange(did_wfh_labels, -n)
table
table %>% filter(occ_2dig_labels != "Military" ) %>%
ggplot(aes(x=fct_rev(fct_inorder(occ_2dig_labels)), y=n, fill = did_wfh_labels, group = YEAR)) +
geom_col(stat = "identity", position = "stack") +facet_wrap(~YEAR)+
geom_text(aes(label = scales::percent(as.numeric(ifelse(Prop>0.05,Prop, "")), accuracy = .1),accuracy = .1L ),position = position_stack(vjust=.5), size=3) +
theme_classic() + theme(legend.position = "bottom", legend.title = element_blank())+
labs(title ="Proportion of Workers in each Occupation Who Did WFH",
subtitle = "Percentages add to 100% within each occupation",
x = "", y = "Estimated # of People",
caption = "ACS 1 year samples for 2019 and 2021 used for weighted population estimates. Military occupations were excluded from graph due to low occurance of observations.") + scale_y_continuous(labels = scales::comma)+
scale_fill_manual(values = c("#a6bddb", "#2b8cbe")) +
coord_flip()
```
```{r}
#|label: fig-Figure3
#|
## Proportion of all workers in each occupation cateogory.##
table <- svytable(~YEAR+did_wfh_labels+occ_2dig_labels, design = dstrata)
table <- table %>%
as_tibble() %>%
group_by(YEAR)%>%
mutate(Prop =round(n/sum(n), digits=3)) %>%
arrange(did_wfh_labels, -n)
table
table %>%
filter(occ_2dig_labels != "Military") %>%
ggplot(aes(x=fct_rev(fct_inorder(occ_2dig_labels)), y=n, fill = did_wfh_labels, group = YEAR)) +
geom_col(stat = "identity", position = "stack") +
facet_wrap(~YEAR)+
geom_text(aes(label = scales::percent(as.numeric(ifelse(Prop>0.02,Prop, "")), accuracy = .1), accuracy = .1L ),
position = position_stack(vjust=.5), size=3) +
theme_classic() +
theme(legend.position = "none",
legend.title = element_blank(),
plot.title.position = "plot",
panel.background = element_rect(fill='transparent'), #transparent panel bg
plot.background = element_rect(fill='transparent', color=NA) #transparent plot bg
)+
labs(title ="Proportion of Illinois Workforce Who Worked From Home",
subtitle = "All workers in labor force with occsoc codes in a year add to 100%",
x = "", y = "Estimated Number of Workers") +#,
# caption = "ACS 1 year samples for 2019 and 2021 used for weighted population estimates,")
scale_y_continuous(labels = scales::comma) +
scale_x_discrete(labels = function(x) str_wrap(x, width=25))+ # makes labels better on axsis
scale_fill_manual(values = c("#a6bddb", "#2b8cbe")) + coord_flip()
```
```{r export-Figure3, include=FALSE}
table %>%
filter(occ_2dig_labels != "Military") %>%
ggplot(aes(x=fct_rev(fct_inorder(occ_2dig_labels)), y=n, fill = did_wfh_labels, group = YEAR)) +
geom_col(stat = "identity", position = "stack") +
facet_wrap(~YEAR)+
geom_text(aes(label = scales::percent(as.numeric(ifelse(Prop>0.02,Prop, "")), accuracy = .1), accuracy = .1L ),