-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_module.py
283 lines (224 loc) · 7.84 KB
/
test_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import glob
import os
import random
import numpy as np
from data_gen import DataSet
from nade import NADE
from keras.layers import Dense, Input, LSTM, Embedding, Dropout, Activation, Lambda, add
from keras import backend as K
from keras.models import Model
from keras.callbacks import Callback
import keras.regularizers
from keras.optimizers import Adam
import tensorflow as tf
def prediction_layer(x):
# x.shape = (?,6040,5)
x_cumsum = K.cumsum(x, axis=2)
# x_cumsum.shape = (?,6040,5)
output = K.softmax(x_cumsum)
# output = (?,6040,5)
return output
def prediction_output_shape(input_shape):
return input_shape
def d_layer(x):
return K.sum(x,axis=1)
def d_output_shape(input_shape):
return (input_shape[0],)
def D_layer(x):
return K.sum(x,axis=1)
def D_output_shape(input_shape):
return (input_shape[0],)
def rating_cost_lambda_func(args):
alpha=1.
std=0.01
"""
"""
pred_score,true_ratings,input_masks,output_masks,D,d = args
pred_score_cum = K.cumsum(pred_score, axis=2)
prob_item_ratings = K.softmax(pred_score_cum)
accu_prob_1N = K.cumsum(prob_item_ratings, axis=2)
accu_prob_N1 = K.cumsum(prob_item_ratings[:, :, ::-1], axis=2)[:, :, ::-1]
mask1N = K.cumsum(true_ratings[:, :, ::-1], axis=2)[:, :, ::-1]
maskN1 = K.cumsum(true_ratings, axis=2)
cost_ordinal_1N = -K.sum((K.log(prob_item_ratings) - K.log(accu_prob_1N)) * mask1N, axis=2)
cost_ordinal_N1 = -K.sum((K.log(prob_item_ratings) - K.log(accu_prob_N1)) * maskN1, axis=2)
cost_ordinal = cost_ordinal_1N + cost_ordinal_N1
nll_item_ratings = K.sum(-(true_ratings * K.log(prob_item_ratings)),axis=2)
nll = std * K.sum(nll_item_ratings,axis=1) * 1.0 * D / (D - d + 1e-6) + alpha * K.sum(cost_ordinal,axis=1) * 1.0 * D / (D - d + 1e-6)
cost = K.mean(nll)
cost = K.expand_dims(cost, 0)
return cost
class RMSE_eval(Callback):
def __init__(self,
data_set,
new_items,
training_set):
self.data_set = data_set
self.rmses = []
self.rate_score = np.array([1, 2, 3, 4, 5], np.float32)
self.new_items = new_items
self.training_set = training_set
def eval_rmse(self):
squared_error = []
n_samples = []
for i,batch in enumerate(self.data_set.generate(max_iters=1)):
inp_r = batch[0]['input_ratings']
out_r = batch[0]['output_ratings']
inp_m = batch[0]['input_masks']
out_m = batch[0]['output_masks']
pred_batch = self.model.predict(batch[0])[1]
true_r = out_r.argmax(axis=2) + 1
pred_r = (pred_batch * self.rate_score[np.newaxis, np.newaxis, :]).sum(axis=2)
pred_r[:, self.new_items] = 3
mask = out_r.sum(axis=2)
'''
if i == 0:
print [true_r[0][j] for j in np.nonzero(true_r[0]* mask[0])[0]]
print [pred_r[0][j] for j in np.nonzero(pred_r[0]* mask[0])[0]]
'''
se = np.sum(np.square(true_r - pred_r) * mask)
n = np.sum(mask)
squared_error.append(se)
n_samples.append(n)
total_squared_error = np.array(squared_error).sum()
total_n_samples = np.array(n_samples).sum()
rmse = np.sqrt(total_squared_error / (total_n_samples * 1.0 + 1e-8))
return rmse
def on_epoch_end(self, epoch, logs={}):
score = self.eval_rmse()
if self.training_set:
print "training set RMSE for epoch %d is %f"%(epoch, score)
else:
print "validation set RMSE for epoch %d is %f"%(epoch, score)
self.rmses.append(score)
if __name__ == '__main__':
batch_size = 64
num_users = 6040
num_items = 3706
data_sample = 1.0
input_dim0 = 6040
input_dim1 = 5
hidden_dim = 250
std = 0.0
alpha = 1.0
print('Loading data...')
train_file_list = sorted(glob.glob(os.path.join(('data/train_set'), 'part*')))
val_file_list = sorted(glob.glob(os.path.join(('data/val_set/'), 'part*')))
test_file_list = sorted(glob.glob(os.path.join(('data/test_set/'), 'part*')))
train_file_list = [dfile for dfile in train_file_list if os.stat(dfile).st_size != 0]
val_file_list = [dfile for dfile in val_file_list if os.stat(dfile).st_size != 0]
test_file_list = [dfile for dfile in test_file_list if os.stat(dfile).st_size != 0]
random.shuffle(train_file_list)
random.shuffle(val_file_list)
random.shuffle(test_file_list)
train_file_list = train_file_list[:max(int(len(train_file_list) * data_sample),1)]
train_set = DataSet(train_file_list,
num_users=num_users,
num_items=num_items,
batch_size=batch_size,
mode=0)
val_set = DataSet(val_file_list,
num_users=num_users,
num_items=num_items,
batch_size=batch_size,
mode=1)
test_set = DataSet(test_file_list,
num_users=num_users,
num_items=num_items,
batch_size=batch_size,
mode=2)
rating_freq = np.zeros((6040, 5))
init_b = np.zeros((6040, 5))
for batch in val_set.generate(max_iters=1):
inp_r = batch[0]['input_ratings']
out_r = batch[0]['output_ratings']
inp_m = batch[0]['input_masks']
out_m = batch[0]['output_masks']
rating_freq += inp_r.sum(axis=0)
log_rating_freq = np.log(rating_freq + 1e-8)
log_rating_freq_diff = np.diff(log_rating_freq, axis=1)
init_b[:, 1:] = log_rating_freq_diff
init_b[:, 0] = log_rating_freq[:, 0]
new_items = np.where(rating_freq.sum(axis=1) == 0)[0]
input_layer = Input(shape=(input_dim0,input_dim1),
name='input_ratings')
output_ratings = Input(shape=(input_dim0,input_dim1),
name='output_ratings')
input_masks = Input(shape=(input_dim0,),
name='input_masks')
output_masks = Input(shape=(input_dim0,),
name='output_masks')
nade_layer = Dropout(0.0)(input_layer)
nade_layer = NADE(hidden_dim=hidden_dim,
activation='tanh',
bias=True,
W_regularizer=keras.regularizers.l2(0.02),
V_regularizer=keras.regularizers.l2(0.02),
b_regularizer=keras.regularizers.l2(0.02),
c_regularizer=keras.regularizers.l2(0.02))(nade_layer)
predicted_ratings = Lambda(prediction_layer,
output_shape=prediction_output_shape,
name='predicted_ratings')(nade_layer)
d = Lambda(d_layer,
output_shape=d_output_shape,
name='d')(input_masks)
sum_masks = add([input_masks, output_masks])
D = Lambda(D_layer,
output_shape=D_output_shape,
name='D')(sum_masks)
loss_out = Lambda(rating_cost_lambda_func,
output_shape=(1,),
name='nade_loss')([nade_layer,output_ratings,input_masks,output_masks,D,d])
cf_nade_model = Model(inputs=[input_layer,output_ratings,input_masks,output_masks],
outputs=[loss_out,predicted_ratings])
cf_nade_model.summary()
adam = Adam(lr=0.001,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-8)
cf_nade_model.compile(loss={'nade_loss': lambda y_true, y_pred: y_pred},
optimizer=adam)
train_rmse_callback = RMSE_eval(data_set=train_set,
new_items=new_items,
training_set=True)
val_rmse_callback = RMSE_eval(data_set=val_set,
new_items=new_items,
training_set=False)
print 'Training...'
cf_nade_model.fit_generator(train_set.generate(),
steps_per_epoch=(train_set.get_corpus_size()//batch_size),
epochs=30,
validation_data=val_set.generate(),
validation_steps=(val_set.get_corpus_size()//batch_size),
shuffle=True,
callbacks=[train_set,val_set,train_rmse_callback,val_rmse_callback],
verbose=1)
print 'Testing...'
rmses = []
rate_score = np.array([1, 2, 3, 4, 5], np.float32)
new_items = new_items
squared_error = []
n_samples = []
for i,batch in enumerate(test_set.generate(max_iters=1)):
inp_r = batch[0]['input_ratings']
out_r = batch[0]['output_ratings']
inp_m = batch[0]['input_masks']
out_m = batch[0]['output_masks']
pred_batch = cf_nade_model.predict(batch[0])[1]
true_r = out_r.argmax(axis=2) + 1
pred_r = (pred_batch * rate_score[np.newaxis, np.newaxis, :]).sum(axis=2)
pred_r[:, new_items] = 3
mask = out_r.sum(axis=2)
'''
if i == 0:
print [true_r[0][j] for j in np.nonzero(true_r[0]* mask[0])[0]]
print [pred_r[0][j] for j in np.nonzero(pred_r[0]* mask[0])[0]]
'''
se = np.sum(np.square(true_r - pred_r) * mask)
n = np.sum(mask)
squared_error.append(se)
n_samples.append(n)
total_squared_error = np.array(squared_error).sum()
total_n_samples = np.array(n_samples).sum()
rmse = np.sqrt(total_squared_error / (total_n_samples * 1.0 + 1e-8))
print "test set RMSE is %f"%(rmse)