diff --git a/PrimeNumberTheoremAnd/SecondProofPNT.lean b/PrimeNumberTheoremAnd/SecondProofPNT.lean index 15411d4b..41342e0a 100644 --- a/PrimeNumberTheoremAnd/SecondProofPNT.lean +++ b/PrimeNumberTheoremAnd/SecondProofPNT.lean @@ -126,6 +126,7 @@ For any $T>0$, there is a $\delta>0$ so that $[1-\delta,1] \times_{ℂ} [-T,T]$ /-%% \begin{proof} +\uses{NoZerosInBoxOfNoneOnBoundary} We have that zeta doesn't vanish on the 1 line and is holomorphic inside the box (except for the pole at $s=1$). If for a height $T>0$, there was no such $\delta$, then there would be a sequence of zeros of $\zeta$ approaching the 1 line, and by compactness, we could find a subsequence of zeros converging to a point on the 1 line. But then $\zeta$ would vanish at that point, a contradiction. (Worse yet, zeta would then be entirely zero...) \end{proof} %%-/ @@ -159,7 +160,7 @@ X^{s}ds = \frac{X^{1}}{1}\mathcal{M}(\widetilde{1_{\epsilon}})(1) /-%% \begin{proof} -\uses{ZeroFreeBox, RectangleIntegral, ResidueOfLogDerivative, MellinOfSmooth1, MellinOfDeltaSpikeAt1} +\uses{ZeroFreeBox, Rectangle, RectangleBorder, RectangleIntegral, ResidueOfLogDerivative, MellinOfSmooth1, MellinOfDeltaSpikeAt1} Residue calculus / the argument principle. \end{proof} %%-/ @@ -179,3 +180,17 @@ where: \end{itemize} %%-/ +/-%% +\section{Weak PNT'} + +\begin{theorem}[Weak PNT']\label{WeakPNT'} We have +$$ \sum_{n \leq x} \Lambda(n) = x + o(x).$$ +\end{theorem} +%%-/ + +/-%% +\begin{proof} +\uses{ChebyshevPsi, SmoothedChebyshevClose, ZetaBoxEval} + Evaluate the integrals. +\end{proof} +%%-/ diff --git a/PrimeNumberTheoremAnd/StrongPNT.lean b/PrimeNumberTheoremAnd/StrongPNT.lean index 11627be4..bf5fe75b 100644 --- a/PrimeNumberTheoremAnd/StrongPNT.lean +++ b/PrimeNumberTheoremAnd/StrongPNT.lean @@ -23,7 +23,7 @@ noncomputable def ChebyshevPsi (x : ℝ) : ℝ := (Finset.range (Nat.floor x)).s /-%% Main Theorem: The Prime Number Theorem in strong form. -\begin{theorem}[PrimeNumberTheorem]\label{StrongPNT}\lean{PrimeNumberTheorem}\uses{WienerIkehara} +\begin{theorem}[PrimeNumberTheorem]\label{StrongPNT}\lean{PrimeNumberTheorem}\uses{WienerIkehara, ChebysevPsi} There is a constant $c > 0$ such that $$ ψ (x) = x + O(x e^{-c \sqrt{\log x}})