diff --git a/blueprint/Basic.tex b/blueprint/Basic.tex index 822b4e15..aa4a231d 100644 --- a/blueprint/Basic.tex +++ b/blueprint/Basic.tex @@ -25,21 +25,35 @@ MellinTransform + Mellin Inversion (Goldfeld-Kontorovich) + ChebyshevPsi + ZeroFreeRegion + Hadamard Factorization + Hoffstein-Lockhart + Goldfeld-Hoffstein-Liemann -9-12 and 2-5 every day -DirichletSeries (NatPos->C) + +LSeries (NatPos->C) + RiemannZetaFunction + RectangleIntegral + ResidueTheoremOnRectangle + ArgumentPrincipleOnRectangle + Break rectangle into lots of little rectangles where f is holomorphic, and squares with center at a pole + HasPoleAt f z : TendsTo 1/f (N 0) + Equiv: TendsTo f atTop + Then locally f looks like (z-z_0)^N g + For all c sufficiently small, integral over big rectangle with finitely many poles is equal to rectangle integral localized at each pole. Rectangles tile rectangles! (But not circles -> circles) No need for toy contours! @@ -59,7 +73,10 @@ Main Theorem: The Prime Number Theorem \begin{theorem}[PrimeNumberTheorem] -PNT +$$ +ψ (x) = x + O(x e^{-c \sqrt{\log x}}) +$$ +as $x\to \infty$. \end{theorem} diff --git a/blueprint/blueprint.tex b/blueprint/blueprint.tex index 959b900e..0755eacc 100644 --- a/blueprint/blueprint.tex +++ b/blueprint/blueprint.tex @@ -13,7 +13,13 @@ \dochome{https://github.com/AlexKontorovich/PrimeNumberTheoremAnd/docs} \title{Prime Number Theorem And ...} -\author{Mathlib} + +\newcommand{\R}{\mathbb{R}} +\newcommand{\Q}{\mathbb{Q}} +\newcommand{\C}{\mathbb{C}} +\newcommand{\Z}{\mathbb{Z}} +\newcommand{\N}{\mathbb{N}} + \begin{document} \maketitle diff --git a/blueprint/wiener.tex b/blueprint/wiener.tex index 2ac79b11..aec87462 100644 --- a/blueprint/wiener.tex +++ b/blueprint/wiener.tex @@ -22,13 +22,13 @@ \chapter{A Fourier-analytic proof of the Wiener-Ikehara theorem} \end{proof} \begin{lemma}[Second Fourier identity]\label{second-fourier} If $\psi: \R \to \C$ is continuous and compactly supported and $x > 0$, then for any $\sigma>1$ -$$ \int_{-\log x}^infty e^{-u(sigma-1)} \hat psi(\frac{u}{2\pi})\ du = x^{sigma - 1} \int_\R \frac{1}{\sigma+it-1} \psi(t) x^{it}\ dt.$$ +$$ \int_{-\log x}^\infty e^{-u(\sigma-1)} \hat \psi(\frac{u}{2\pi})\ du = x^{\sigma - 1} \int_\R \frac{1}{\sigma+it-1} \psi(t) x^{it}\ dt.$$ \end{lemma} \begin{proof} The left-hand side expands as - $$ \int_{-\log x}^infty \int_\R e^{-u(sigma-1)} \psi(t) e(-\frac{tu}{2\pi})\ dt du = x^{sigma - 1} \int_\R \frac{1}{\sigma+it-1} \psi(t) x^{it}\ dt$$ + $$ \int_{-\log x}^\infty \int_\R e^{-u(\sigma-1)} \psi(t) e(-\frac{tu}{2\pi})\ dt du = x^{\sigma - 1} \int_\R \frac{1}{\sigma+it-1} \psi(t) x^{it}\ dt$$ so by Fubini's theorem it suffices to verify the identity -$$ \int_{-\log x}^infty \int_\R e^{-u(sigma-1)} e(-\frac{tu}{2\pi})\ du = x^{sigma - 1} \frac{1}{\sigma+it-1} x^{it}$$ +$$ \int_{-\log x}^\infty \int_\R e^{-u(\sigma-1)} e(-\frac{tu}{2\pi})\ du = x^{\sigma - 1} \frac{1}{\sigma+it-1} x^{it}$$ which is a routine calculation. \end{proof} @@ -49,16 +49,16 @@ \chapter{A Fourier-analytic proof of the Wiener-Ikehara theorem} \end{proof} \begin{lemma}[Limiting Fourier identity]\label{limiting} If $\psi: \R \to \C$ is $C^2$ and compactly supported and $x \geq 1$, then -$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) - A \int_{-\log x}^infty \hat psi(\frac{u}{2\pi})\ du = \int_\R G(1+it) \psi(t) x^{it}\ dt.$$ +$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) - A \int_{-\log x}^\infty \hat \psi(\frac{u}{2\pi})\ du = \int_\R G(1+it) \psi(t) x^{it}\ dt.$$ \end{lemma} \begin{proof} By the preceding two lemmas, we know that for any $\sigma>1$, we have - $$ \sum_{n=1}^\infty \frac{f(n)}{n^\sigma} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) - A x^{1-\sigma} \int_{-\log x}^infty e^{-u(\sigma-1)} \hat psi(\frac{u}{2\pi})\ du = \int_\R G(\sigma+it) \psi(t) x^{it}\ dt.$$ + $$ \sum_{n=1}^\infty \frac{f(n)}{n^\sigma} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) - A x^{1-\sigma} \int_{-\log x}^\infty e^{-u(\sigma-1)} \hat \psi(\frac{u}{2\pi})\ du = \int_\R G(\sigma+it) \psi(t) x^{it}\ dt.$$ Now take limits as $\sigma \to 1$ using dominated convergence together with \eqref{cheby} and Lemma \ref{decay} to obtain the result. \end{proof} \begin{corollary}\label{limiting-cor} With the hypotheses as above, we have - $$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat psi(\frac{u}{2\pi})\ du + o(1)$$ + $$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat \psi(\frac{u}{2\pi})\ du + o(1)$$ as $x \to \infty$. \end{corollary} @@ -74,9 +74,9 @@ \chapter{A Fourier-analytic proof of the Wiener-Ikehara theorem} where the implied constants depend on $\psi$. By Lemma \ref{decay} we then have $$ \hat \psi_{>R}(u) \ll R^{-1} / (1+|u|^2).$$ Using this and \eqref{cheby} one can show that -$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi_{>R}( \frac{1}{2\pi} \log \frac{n}{x} ), A \int_{-\infty}^\infty \hat psi_{>R} (\frac{u}{2\pi})\ du \ll R^{-1} $$ -(with implied constants also depending on $A$), while from Lemma \ref{limiting-cor} on ehas -$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi_{\leq R}( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat psi_{\leq R} (\frac{u}{2\pi})\ du + o(1).$$ +$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi_{>R}( \frac{1}{2\pi} \log \frac{n}{x} ), A \int_{-\infty}^\infty \hat \psi_{>R} (\frac{u}{2\pi})\ du \ll R^{-1} $$ +(with implied constants also depending on $A$), while from Lemma \ref{limiting-cor} one has +$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi_{\leq R}( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat \psi_{\leq R} (\frac{u}{2\pi})\ du + o(1).$$ Combining the two estimates and letting $R$ be large, we obtain the claim. \end{proof} @@ -94,7 +94,7 @@ \chapter{A Fourier-analytic proof of the Wiener-Ikehara theorem} \begin{proof} By Lemma \ref{bij}, we can write $$ y \Psi(y) = \hat \psi( \frac{1}{2\pi} \log y )$$ for all $y>0$ and some Schwartz function $\psi$. Making this substitution, the claim is then equivalent after standard manipulations to -$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat psi(\frac{u}{2\pi})\ du + o(1)$$ +$$ \sum_{n=1}^\infty \frac{f(n)}{n} \hat \psi( \frac{1}{2\pi} \log \frac{n}{x} ) = A \int_{-\infty}^\infty \hat \psi(\frac{u}{2\pi})\ du + o(1)$$ and the claim follows from Lemma \ref{schwarz-id}. \end{proof}