From 5d5d1cd104b73a1f3d265ec1bbb92d55c96cbe0d Mon Sep 17 00:00:00 2001 From: AlexKontorovich <58564076+AlexKontorovich@users.noreply.github.com> Date: Thu, 1 Feb 2024 11:07:35 -0500 Subject: [PATCH] adding primed versions for 2 pi i factors --- PrimeNumberTheoremAnd/MellinCalculus.lean | 8 ++++---- PrimeNumberTheoremAnd/ResidueCalcOnRectangles.lean | 7 +++++-- 2 files changed, 9 insertions(+), 6 deletions(-) diff --git a/PrimeNumberTheoremAnd/MellinCalculus.lean b/PrimeNumberTheoremAnd/MellinCalculus.lean index a51432ff..e605a5d8 100644 --- a/PrimeNumberTheoremAnd/MellinCalculus.lean +++ b/PrimeNumberTheoremAnd/MellinCalculus.lean @@ -24,15 +24,15 @@ It is very convenient to define integrals along vertical lines in the complex pl Let $f$ be a function from $\mathbb{C}$ to $\mathbb{C}$, and let $\sigma$ be a real number. Then we define $$\int_{(\sigma)}f(s)ds = \int_{\sigma-i\infty}^{\sigma+i\infty}f(s)ds.$$ \end{definition} -[Note: Better to define $\int_{(\sigma)}$ as $\frac1{2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}$?? -There's a factor of $2\pi i$ in such contour integrals...] -Attempt on 2/1/24: yes, add $1/(2\pi i)$ to the definition of ``VerticalIntegral'' and ``RectangleIntegral'' (below). +We also have a version with a factor of $1/(2\pi i)$. %%-/ noncomputable def VerticalIntegral (f : ℂ → ℂ) (σ : ℝ) : ℂ := - (1 / (2 * π)) * ∫ t : ℝ, f (σ + t * I) + I • ∫ t : ℝ, f (σ + t * I) +noncomputable abbrev VerticalIntegral' (f : ℂ → ℂ) (σ : ℝ) : ℂ := + (1 / (2 * π * I)) * ∫ t : ℝ, f (σ + t * I) /-%% The following is preparatory material used in the proof of the Perron formula, see Lemma \ref{PerronFormula}. diff --git a/PrimeNumberTheoremAnd/ResidueCalcOnRectangles.lean b/PrimeNumberTheoremAnd/ResidueCalcOnRectangles.lean index ba142bce..ebebebcc 100644 --- a/PrimeNumberTheoremAnd/ResidueCalcOnRectangles.lean +++ b/PrimeNumberTheoremAnd/ResidueCalcOnRectangles.lean @@ -24,15 +24,18 @@ def Rectangle (z w : ℂ) : Set ℂ := [[z.re, w.re]] ×ℂ [[z.im, w.im]] /-%% \begin{definition}\label{RectangleIntegral}\lean{RectangleIntegral}\leanok A RectangleIntegral of a function $f$ is one over a rectangle determined by $z$ and $w$ in $\C$. -We will sometimes denote it by $\int_{z}^{w} f$. +We will sometimes denote it by $\int_{z}^{w} f$. (There is also a primed version, which is $1/(2\pi i)$ times the original.) \end{definition} %%-/ /-- A `RectangleIntegral` of a function `f` is one over a rectangle determined by `z` and `w` in `ℂ`. -/ noncomputable def RectangleIntegral (f : ℂ → ℂ) (z w : ℂ) : ℂ := - (1/(2 * π * I)) * ((∫ x : ℝ in z.re..w.re, f (x + z.im * I)) - (∫ x : ℝ in z.re..w.re, f (x + w.im * I)) + ((∫ x : ℝ in z.re..w.re, f (x + z.im * I)) - (∫ x : ℝ in z.re..w.re, f (x + w.im * I)) + I • (∫ y : ℝ in z.im..w.im, f (w.re + y * I)) - I • ∫ y : ℝ in z.im..w.im, f (z.re + y * I)) +noncomputable abbrev RectangleIntegral' (f : ℂ → ℂ) (z w : ℂ) : ℂ := + (1/(2 * π * I)) * RectangleIntegral f z w + /-- A function is `HolomorphicOn` a set if it is complex differentiable on that set. -/ abbrev HolomorphicOn (f : ℂ → ℂ) (s : Set ℂ) : Prop := DifferentiableOn ℂ f s