From 6425259e37da6bab0e988f8acefd601de1376ca9 Mon Sep 17 00:00:00 2001 From: AlexKontorovich <58564076+AlexKontorovich@users.noreply.github.com> Date: Mon, 29 Jan 2024 17:32:32 -0500 Subject: [PATCH] aux lemmata --- PrimeNumberTheoremAnd/MellinCalculus.lean | 112 ++++++++++++++++------ 1 file changed, 85 insertions(+), 27 deletions(-) diff --git a/PrimeNumberTheoremAnd/MellinCalculus.lean b/PrimeNumberTheoremAnd/MellinCalculus.lean index 02991e47..d65ae9dd 100644 --- a/PrimeNumberTheoremAnd/MellinCalculus.lean +++ b/PrimeNumberTheoremAnd/MellinCalculus.lean @@ -29,28 +29,42 @@ noncomputable def VerticalIntegral (f : ℂ → ℂ) (σ : ℝ) : ℂ := I • ∫ t : ℝ, f (σ + t * I) /-%% -We first prove the following ``Perron-type'' formula. -\begin{lemma}\label{PerronFormula} -For $x>0$ and $\sigma>0$, we have -$$ -\frac1{2\pi i} -\int_{(\sigma)}\frac{x^s}{s(s+1)}ds = \begin{cases} -1-\frac1x & \text{ if }x>1\\ -0 & \text{ if } x<1 -\end{cases}. -$$ -\end{lemma} +We first prove the following ``Perron-type'' formula, see Lemma \ref{PerronFormula} below. +This requires some preparatory material. %%-/ +/-%% +\begin{lemma}\label{HolomorphicOn_of_Perron_function}\lean{HolomorphicOn_of_Perron_function} +Let $x>0$. Then the function $f(s) = x^s/(s(s+1))$ is holomorphic on the half-plane $\{s\in\mathbb{C}:\Re(s)>0\}$. +\end{lemma} +%%-/ lemma HolomorphicOn_of_Perron_function {x : ℝ} (xpos : 0 < x) : HolomorphicOn (fun s => x ^ s / (s * (s + 1))) {s | 0 < s.re} := by sorry +/-%% +\begin{lemma}\label{RectangleIntegral_eq_zero}\lean{RectangleIntegral_eq_zero} +\uses{RectangleIntegral} +Let $\sigma,\sigma',T>0$, and let $f$ be a holomorphic function on the half-plane $\{s\in\mathbb{C}:\Re(s)>0\}$. Then +the rectanglet integral +$$\int_{\sigma-iT}^{\sigma'+iT}f(s)ds = 0.$$ +\end{lemma} +%%-/ lemma RectangleIntegral_eq_zero {σ σ' T : ℝ} (σ_pos : 0 < σ) (σ'_pos : 0 < σ') (T_pos : 0 < T) {f : ℂ → ℂ} (fHolo : HolomorphicOn f {s | 0 < s.re}) : RectangleIntegral f (σ - I * T) (σ' + I * T) = 0 := by sorry -- apply HolomorphicOn.vanishesOnRectangle in PR #9598 +/-%% +\begin{lemma}\label{RectangleIntegral_tendsTo_VerticalIntegral}\lean{RectangleIntegral_tendsTo_VerticalIntegral} +\uses{RectangleIntegral} +Let $\sigma,\sigma'>0$, and let $f$ be a holomorphic function on the half-plane $\{s\in\mathbb{C}:\Re(s)>0\}$. Then +the limit of rectangle integrals +$$\lim_{T\to\infty}\int_{\sigma-iT}^{\sigma'+iT}f(s)ds = \int_{(\sigma')}f(s)ds - \int_{(\sigma)}f(s)ds +.$$ +*** Needs more conditions on $f$ *** +\end{lemma} +%%-/ lemma RectangleIntegral_tendsTo_VerticalIntegral {σ σ' : ℝ} (σ_pos : 0 < σ) (σ'_pos : 0 < σ') {f : ℂ → ℂ} (fHolo : HolomorphicOn f {s | 0 < s.re}) : -- needs more hypotheses @@ -58,21 +72,40 @@ lemma RectangleIntegral_tendsTo_VerticalIntegral {σ σ' : ℝ} (σ_pos : 0 < σ (𝓝 (VerticalIntegral f σ' - VerticalIntegral f σ)) := by sorry +/-%% +\begin{lemma}\label{PerronIntegralPosAux}\lean{PerronIntegralPosAux} +The integral +$$\int_\R\frac{1}{|(1+t)(1+t+1)|}dt$$ +is positive (and hence convergent - since a divergent integral is zero in Lean, by definition). +\end{lemma} +%%-/ lemma PerronIntegralPosAux : 0 < ∫ (t : ℝ), 1 / |(1 + t) * (1 + t + 1)| := by - sorry +/-%% +\begin{lemma}\label{VertIntPerronBound}\lean{VertIntPerronBound} +\uses{VerticalIntegral} +Let $x>0$, $\sigma>1$, and $x<1$. Then +$$\left| +\int_{(\sigma)}\frac{x^s}{s(s+1)}ds\right| \leq x^\sigma \int_\R\frac{1}{|(1+t)(1+t+1)|}dt.$$ +\end{lemma} +%%-/ lemma VertIntPerronBound {x : ℝ} (xpos : 0 < x) (x_le_one : x < 1) {σ : ℝ} (σ_gt_one : 1 < σ) : - Complex.abs (VerticalIntegral f σ') ≤ x ^ σ' * ∫ (t : ℝ), 1 / |(1 + t) * (1 + t + 1)| := by + Complex.abs (VerticalIntegral f σ) ≤ x ^ σ * ∫ (t : ℝ), 1 / |(1 + t) * (1 + t + 1)| := by sorry - -lemma limitOfConstant {a : ℝ → ℂ} (σ : ℝ) (ha : ∀ᶠ (σ' : ℝ) (σ'' : ℝ) in atTop, a σ' = a σ'') - (ha' : Tendsto (fun σ' => a σ') atTop (𝓝 0)) : a σ = 0 := by +/-%% +\begin{lemma}\label{limitOfConstant}\lean{limitOfConstant} +Let $a:\R\to\C$ be a function, and let $\sigma>0$ be a real number. Suppose that, for all +$\sigma, \sigma'>0$, we have $a(\sigma')=a(\sigma)$, and that +$\lim_{\sigma\to\infty}a(\sigma)=0$. Then $a(\sigma)=0$. +%%-/ +lemma limitOfConstant {a : ℝ → ℂ} {σ : ℝ} (σpos : 0 < σ) (ha : ∀ (σ' : ℝ) (σ'' : ℝ) (σ'pos : 0 < σ') + (σ''pos : 0 < σ''), a σ' = a σ'') (ha' : Tendsto (fun σ' => a σ') atTop (𝓝 0)) : a σ = 0 := by sorry /-%% -We break this into the two cases, first proving the following. -\begin{lemma}\label{PerronFormulaLeOne}\lean{VerticalIntegral_Perron_le_one} +We are ready for the Perron formula, which breaks into two cases, the first being: +\begin{lemma}\label{PerronFormulaLtOne}\lean{VerticalIntegral_Perron_lt_one} For $x>0$, $\sigma>0$, and $x<1$, we have $$ \frac1{2\pi i} @@ -80,11 +113,11 @@ $$ $$ \end{lemma} %%-/ -lemma VerticalIntegral_Perron_le_one {x : ℝ} (xpos : 0 < x) (x_le_one : x < 1) +lemma VerticalIntegral_Perron_lt_one {x : ℝ} (xpos : 0 < x) (x_lt_one : x < 1) {σ : ℝ} (σ_pos : 0 < σ) : VerticalIntegral (fun s ↦ x^s / (s * (s + 1))) σ = 0 := by /-%% \begin{proof} -\uses{ResidueTheoremOnRectangle, RectangleIntegralEqSumOfRectangles, VerticalIntegral, MellinTransform} +\uses{HolomorphicOn_of_Perron_function, RectangleIntegral_eq_zero, PerronIntegralPosAux, VertIntPerronBound, limitOfConstant} Let $f(s) = x^s/(s(s+1))$. Then $f$ is holomorphic on the half-plane $\{s\in\mathbb{C}:\Re(s)>0\}$. %%-/ set f : ℂ → ℂ := (fun s ↦ x^s / (s * (s + 1))) @@ -108,22 +141,47 @@ lemma VerticalIntegral_Perron_le_one {x : ℝ} (xpos : 0 < x) (x_le_one : x < 1) --%% $C=\int_\R\frac{1}{|(1+t)(1+t+1)|}dt$. have VertIntBound : ∃ C > 0, ∀ σ' > 1, Complex.abs (VerticalIntegral f σ') ≤ x^σ' * C · let C := ∫ (t : ℝ), 1 / |(1 + t) * (1 + t + 1)| - exact ⟨C, PerronIntegralPosAux, fun σ' σ'_gt_one ↦ VertIntPerronBound xpos x_le_one σ'_gt_one⟩ + exact ⟨C, PerronIntegralPosAux, fun σ' σ'_gt_one ↦ VertIntPerronBound xpos x_lt_one σ'_gt_one⟩ --%% Therefore $\int_{(\sigma')}\to 0$ as $\sigma'\to\infty$. have VertIntTendsto : Tendsto (fun (σ' : ℝ) ↦ VerticalIntegral f σ') atTop (𝓝 0) · have : ‖x‖ < 1 := sorry have := tendsto_pow_atTop_nhds_0_of_norm_lt_1 this sorry --%% So pulling contours gives $\int_{(\sigma)}=0$. - refine limitOfConstant (a := fun σ' ↦ VerticalIntegral f σ') σ ?_ VertIntTendsto - filter_upwards [mem_atTop 1] - intro σ' σ'_ge_one - filter_upwards [mem_atTop 1] - intro σ'' σ''_ge_one - exact contourPull σ' σ'' (by linarith) (by linarith) + exact limitOfConstant (a := fun σ' ↦ VerticalIntegral f σ') σ_pos contourPull VertIntTendsto --%%\end{proof} +/-%% +The second lemma is the case $x>1$. +\begin{lemma}\label{PerronFormulaGtOne}\lean{VerticalIntegral_Perron_gt_one} +For $x>1$ and $\sigma>0$, we have +$$ +\frac1{2\pi i} +\int_{(\sigma)}\frac{x^s}{s(s+1)}ds =1-1/x. +$$ +\end{lemma} +%%-/ +lemma VerticalIntegral_Perron_gt_one {x : ℝ} (x_gt_one : 1 < x) {σ : ℝ} (σ_pos : 0 < σ) : + VerticalIntegral (fun s ↦ x^s / (s * (s + 1))) σ = 1 - 1 / x := by + sorry + + +/-%% +The two together give the Perron formula. +\begin{lemma}\label{PerronFormula} +\uses{PerronFormulaLtOne, PerronFormulaGtOne} +For $x>0$ and $\sigma>0$, we have +$$ +\frac1{2\pi i} +\int_{(\sigma)}\frac{x^s}{s(s+1)}ds = \begin{cases} +1-\frac1x & \text{ if }x>1\\ +0 & \text{ if } x<1 +\end{cases}. +$$ +\end{lemma} +%%-/ + /-%% \begin{theorem}\label{MellinInversion} Let $f$ be a nice function from $\mathbb{R}_{>0}$ to $\mathbb{C}$, and let $\sigma$ be sufficiently large. Then