From c7d4a1f0f8ee8cae549ff8d0c373c1a54b562d49 Mon Sep 17 00:00:00 2001 From: Alastair Irving <29164966+ajirving@users.noreply.github.com> Date: Sat, 7 Dec 2024 12:46:38 +0000 Subject: [PATCH] PerronFormula.lean: fix variable of integration and typo in set where f is holomorphic. --- PrimeNumberTheoremAnd/PerronFormula.lean | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/PrimeNumberTheoremAnd/PerronFormula.lean b/PrimeNumberTheoremAnd/PerronFormula.lean index e978c07..8c199d3 100644 --- a/PrimeNumberTheoremAnd/PerronFormula.lean +++ b/PrimeNumberTheoremAnd/PerronFormula.lean @@ -505,7 +505,7 @@ lemma isTheta (xpos : 0 < x) : /-%% \begin{lemma}[isIntegrable]\label{isIntegrable}\lean{Perron.isIntegrable}\leanok Let $x>0$ and $\sigma\in\R$. Then -$$\int_{\R}\frac{x^{\sigma+it}}{(\sigma+it)(1+\sigma + it)}d\sigma$$ +$$\int_{\R}\frac{x^{\sigma+it}}{(\sigma+it)(1+\sigma + it)}dt$$ is integrable. \end{lemma} %%-/ @@ -957,7 +957,7 @@ lemma formulaGtOne (x_gt_one : 1 < x) (σ_pos : 0 < σ) : \uses{isHolomorphicOn, residuePull1, residuePull2, contourPull3, integralPosAux, vertIntBoundLeft, tendsto_rpow_atTop_nhds_zero_of_norm_gt_one, limitOfConstantLeft} - Let $f(s) = x^s/(s(s+1))$. Then $f$ is holomorphic on $\C \setminus {0,1}$. + Let $f(s) = x^s/(s(s+1))$. Then $f$ is holomorphic on $\C \setminus {0,-1}$. %%-/ set f : ℂ → ℂ := (fun s ↦ x^s / (s * (s + 1))) --%% First pull the contour from $(\sigma)$ to $(-1/2)$, picking up a residue $1$ at $s=0$.