-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathutils.py
135 lines (122 loc) · 5.93 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import torch.nn
# set all modules to training mode
def set_to_train_mode(model, report=True):
for _k in model._modules.keys():
if 'new' in _k:
if report:
print("Setting {0:} to training mode".format(_k))
model._modules[_k].train(True)
# switch on gradients and add parameters to the list of trainable parameters
# implemented only for update_type=new_bn (classification module S + all batch
# normalization layers in the model
# This doesn't apply to running_var, running_mean and batch tracking (frozen)
# in batch normalization layers
# This assumes that trainable layers have either 'new' or 'bn' in their name
def switch_model_on(model, ckpt, list_trained_pars):
param_names = ckpt['model_weights'].keys()
for _n,_p in model.named_parameters():
if _p.dtype==torch.float32 and _n in param_names:
if not 'new' in _n and not 'bn' in _n:
_p.requires_grad_(True)
print(_n, "grads on")
else:
_p.requires_grad_(True)
list_trained_pars.append(_p)
print(_n, "trainable pars")
elif _p.dtype==torch.float32 and not _n in param_names:
_p.requires_grad_(True)
list_trained_pars.append(_p)
print(_n, "new pars, trainable")
# AVERAGE PRECISION COMPUTATION
# adapted from Matterport Mask R-CNN implementation
# https://github.com/matterport/Mask_RCNN
# inputs are predicted masks>threshold (0.5)
def compute_overlaps_masks(masks1, masks2):
# masks1: (HxWxnum_pred)
# masks2: (HxWxnum_gts)
# flatten masks and compute their areas
# masks1: num_pred x H*W
# masks2: num_gt x H*W
# overlap: num_pred x num_gt
masks1 = masks1.flatten(start_dim=1)
masks2 = masks2.flatten(start_dim=1)
area2 = masks2.sum(dim=(1,), dtype=torch.float)
area1 = masks1.sum(dim=(1,), dtype=torch.float)
# duplicatae each predicted mask num_gt times, compute the union (sum) of areas
# num_pred x num_gt
area1 = area1.unsqueeze_(1).expand(*[area1.size()[0], area2.size()[0]])
union = area1 + area2
# intersections and union: transpose predictions, the overlap matrix is num_predxnum_gts
intersections = masks1.float().matmul(masks2.t().float())
# +1: divide by 0
overlaps = intersections / (union-intersections)
return overlaps
# compute average precision for the specified IoU threshold
def compute_matches(gt_boxes, gt_class_ids, gt_masks,
pred_boxes, pred_class_ids, pred_scores, pred_masks,
iou_threshold=0.5):
# Sort predictions by score from high to low
indices = pred_scores.argsort().flip(dims=(0,))
pred_boxes = pred_boxes[indices]
pred_class_ids = pred_class_ids[indices]
pred_scores = pred_scores[indices]
pred_masks = pred_masks[indices,...]
# Compute IoU overlaps [pred_masks, gt_masks]
overlaps = compute_overlaps_masks(pred_masks, gt_masks)
# separate predictions for each gt object (a total of gt_masks splits
split_overlaps = overlaps.t().split(1)
# Loop through predictions and find matching ground truth boxes
match_count = 0
# At the start all predictions are False Positives, all gts are False Negatives
pred_match = torch.tensor([-1]).expand(pred_boxes.size()[0]).float()
gt_match = torch.tensor([-1]).expand(gt_boxes.size()[0]).float()
# Alex: loop through each column (gt object), get
for _i, splits in enumerate(split_overlaps):
# ground truth class
gt_class = gt_class_ids[_i]
if (splits>iou_threshold).any():
# get best predictions, their indices inthe IoU tensor and their classes
global_best_preds_inds = torch.nonzero(splits[0]>iou_threshold).view(-1)
pred_classes = pred_class_ids[global_best_preds_inds]
best_preds = splits[0][splits[0]>iou_threshold]
# sort them locally-nothing else,
local_best_preds_sorted = best_preds.argsort().flip(dims=(0,))
# loop through each prediction's index, sorted in the descending order
for p in local_best_preds_sorted:
if pred_classes[p]==gt_class:
# Hit?
match_count +=1
pred_match[global_best_preds_inds[p]] = _i
gt_match[_i] = global_best_preds_inds[p]
# important: if the prediction is True Positive, finish the loop
break
return gt_match, pred_match, overlaps
# AP for a single IoU threshold and 1 image
def compute_ap(gt_boxes, gt_class_ids, gt_masks,
pred_boxes, pred_class_ids, pred_scores, pred_masks,
iou_threshold=0.5):
# Get matches and overlaps
gt_match, pred_match, overlaps = compute_matches(
gt_boxes, gt_class_ids, gt_masks,
pred_boxes, pred_class_ids, pred_scores, pred_masks,
iou_threshold)
# Compute precision and recall at each prediction box step
precisions = (pred_match>-1).cumsum(dim=0).float().div(torch.arange(pred_match.numel()).float()+1)
recalls = (pred_match>-1).cumsum(dim=0).float().div(gt_match.numel())
# Pad with start and end values to simplify the math
precisions = torch.cat([torch.tensor([0]).float(), precisions, torch.tensor([0]).float()])
recalls = torch.cat([torch.tensor([0]).float(), recalls, torch.tensor([1]).float()])
# Ensure precision values decrease but don't increase. This way, the
# precision value at each recall threshold is the maximum it can be
# for all following recall thresholds, as specified by the VOC paper.
for i in range(len(precisions) - 2, -1, -1):
precisions[i] = torch.max(precisions[i], precisions[i + 1])
# Compute mean AP over recall range
indices = torch.nonzero(recalls[:-1] !=recalls[1:]).squeeze_(1)+1
map = torch.sum((recalls[indices] - recalls[indices - 1]) *
precisions[indices])
return map, precisions, recalls, overlaps
# easier boolean argument
def str_to_bool(v):
return v.lower() in ('true')