-
Notifications
You must be signed in to change notification settings - Fork 1
/
loadModel.py
55 lines (47 loc) · 1.23 KB
/
loadModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import tensorflow as tf
import keras
import numpy as np
model = keras.models.load_model("model.keras")
"""
data_dir = "Test"
test_ds = tf.keras.utils.image_dataset_from_directory(
data_dir,
seed=42,
image_size=(180, 180),
batch_size=32,
)
"""
data_dir = "Training Images - 258"
BATCH_SIZE=32
train_ds = tf.keras.utils.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=42,
image_size=(180, 180),
batch_size = BATCH_SIZE,
)
"""
val_ds = tf.keras.utils.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=42,
image_size=(180, 180),
batch_size = BATCH_SIZE,
)
"""
tf_callable = tf.function(
model.call,
autograph=False,
input_signature=[tf.TensorSpec((1, 180, 180, 3), tf.float32)],
)
tf_concrete_function = tf_callable.get_concrete_function()
converter = tf.lite.TFLiteConverter.from_concrete_functions(
[tf_concrete_function], tf_callable
)
tflite_model = converter.convert()
# new_model = tf.keras.models.load_model('model.keras')
# # Save the model in a file
with open('model.tflite', 'wb') as f:
f.write(tflite_model)