Skip to content

Latest commit

 

History

History
200 lines (172 loc) · 6.25 KB

README.md

File metadata and controls

200 lines (172 loc) · 6.25 KB

最小二乘法拟合曲线

最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。 利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。 最小二乘法还可用于曲线拟合。

应用程序简介

如图为应用程序的主界面,通过导入数据按钮,可以导入需要拟合的数据:

数据的格式为txt,其内容如下:

1880	0.01
1890	0.02
1900	0.03
1910	0.04
1920	0.06
1930	0.08
1940	0.10
1950	0.13
1960	0.18
1970	0.24
1980	0.32

其中第一列表示横坐标x,第二列表示纵坐标y,一行表示一个点坐标,中间用制表符隔开。 导入数据后,显示导入数据,并自动计算拟合结果和生成图像。

结果中将显示形如y=a+bx+cx^2+...拟合多项式的各项系数a,b,c...,滑动滑块可以调整拟合多项式的最高次数,拟合多项式结果和拟合曲线的图像会实时更新,如下为多项式最高次数为6的拟合结果:

核心代码

最小二乘拟合模块

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace 最小二乘法拟合曲线
{
    
    public static class LeastSquares
    {
        ///<summary>
        ///用最小二乘法拟合二元多次曲线
        ///例如y=ax+b
        ///其中MultiLine将返回a,b两个参数。
        ///a对应MultiLine[1]
        ///b对应MultiLine[0]
        ///</summary>
        ///<param name="arrX">已知点的x坐标集合</param>
        ///<param name="arrY">已知点的y坐标集合</param>
        ///<param name="length">已知点的个数</param>
        ///<param name="dimension">方程的最高次数</param>
        public static double[] MultiLine(double[] arrX, double[] arrY, int length, int dimension)//二元多次线性方程拟合曲线
        {
            int n = dimension + 1;                  //dimension次方程需要求 dimension+1个 系数
            double[,] Guass = new double[n, n + 1];      //高斯矩阵 例如:y=a0+a1*x+a2*x*x
            for (int i = 0; i < n; i++)
            {
                int j;
                for (j = 0; j < n; j++)
                {
                    Guass[i, j] = SumArr(arrX, j + i, length);
                }
                Guass[i, j] = SumArr(arrX, i, arrY, 1, length);
            }

            return ComputGauss(Guass, n);

        }
        private static double SumArr(double[] arr, int n, int length) //求数组的元素的n次方的和
        {
            double s = 0;
            for (int i = 0; i < length; i++)
            {
                if (arr[i] != 0 || n != 0)
                    s = s + Math.Pow(arr[i], n);
                else
                    s = s + 1;
            }
            return s;
        }
        private static double SumArr(double[] arr1, int n1, double[] arr2, int n2, int length)
        {
            double s = 0;
            for (int i = 0; i < length; i++)
            {
                if ((arr1[i] != 0 || n1 != 0) && (arr2[i] != 0 || n2 != 0))
                    s = s + Math.Pow(arr1[i], n1) * Math.Pow(arr2[i], n2);
                else
                    s = s + 1;
            }
            return s;

        }
        private static double[] ComputGauss(double[,] Guass, int n)
        {
            int i, j;
            int k, m;
            double temp;
            double max;
            double s;
            double[] x = new double[n];

            for (i = 0; i < n; i++) x[i] = 0.0;//初始化
            for (j = 0; j < n; j++)
            {
                max = 0;

                k = j;
                for (i = j; i < n; i++)
                {
                    if (Math.Abs(Guass[i, j]) > max)
                    {
                        max = Guass[i, j];
                        k = i;
                    }
                }
               if (k != j)
                {
                    for (m = j; m < n + 1; m++)
                    {
                        temp = Guass[j, m];
                        Guass[j, m] = Guass[k, m];
                        Guass[k, m] = temp;
                    }
                }
                if (0 == max)
                {
                    // "此线性方程为奇异线性方程" 
                   return x;
                }

                for (i = j + 1; i < n; i++)
                {
                    s = Guass[i, j];
                    for (m = j; m < n + 1; m++)
                    {
                        Guass[i, m] = Guass[i, m] - Guass[j, m] * s / (Guass[j, j]);
                    }
                }
            }

            for (i = n - 1; i >= 0; i--)
            {
                s = 0;
                for (j = i + 1; j < n; j++)
                {
                    s = s + Guass[i, j] * x[j];
                }
                x[i] = (Guass[i, n] - s) / Guass[i, i];
            }
            return x;
        }

    }
}

曲线绘制模块

  此处的函数图像的显示使用的是ZedGraph控件,其Sourceforge的下载地址为:https://sourceforge.net/projects/zedgraph/   绘图部分的实现如下:

zedGraph.GraphPane.CurveList.Clear();
zedGraph.IsShowPointValues = true;
zedGraph.GraphPane.Title = "最小二乘法拟合结果";
zedGraph.GraphPane.XAxis.Title = "";
zedGraph.GraphPane.YAxis.Title = "";

LineItem curve = zedGraph.GraphPane.AddCurve("数据点", X, Y, Color.Red, SymbolType.Circle);
curve.Line.IsVisible = false;

double[] Xs = new double[1000];
double[] Ys = new double[1000];
Xs[0] = X[0];
Ys[0] = getYvalue(Xs[0], args);
double step = (max(X) - min(X)) / 1000;
for (int i = 1; i < 1000; i++)
{
    Xs[i] = Xs[i - 1] + step;
    Ys[i] = getYvalue(Xs[i], args);
}

zedGraph.GraphPane.AddCurve("拟合曲线", Xs, Ys, Color.Blue, SymbolType.None);
zedGraph.AxisChange();
zedGraph.Invalidate();