-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmain.py
186 lines (143 loc) · 8.04 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import argparse
import logging
import os
import shutil
import sys
import tensorboardX as tb
import numpy as np
import torch
import yaml
from configs import *
from runners import *
def parse_args_and_config():
parser = argparse.ArgumentParser(description=globals()['__doc__'])
parser.add_argument('--config', type=str, required=True, help='Path to the config file')
parser.add_argument('--seed', type=int, default=1234, help='Random seed')
parser.add_argument('--exp', type=str, default='exp', help='Path for saving running related data.')
parser.add_argument('--doc', type=str, required=True, help='A string for documentation purpose. '
'Will be the name of the log folder.')
parser.add_argument('--comment', type=str, default='', help='A string for experiment comment')
parser.add_argument('--verbose', type=str, default='warning', help='Verbose level: info | debug | warning | critical')
# Task to do
parser.add_argument('--train', action='store_true', help='Whether to train the model')
parser.add_argument('--sample', action='store_true', help='Whether to produce samples from the model')
parser.add_argument('--fast_fid', action='store_true', help='Whether to evaluate the FID metric')
parser.add_argument('--inception', action='store_true', help='Whether to evaluate the inception metric')
parser.add_argument('--eval', action='store_true', help='')
parser.add_argument('--stackedmnist', action='store_true', help='Whether to execute the StackedMNIST task')
parser.add_argument('--resume_training', action='store_true', help='Whether to resume training')
parser.add_argument('-i', '--image_folder', type=str, default='images', help="The folder name of samples")
parser.add_argument('--data_folder', default='/Datasets')
parser.add_argument('--ni', action='store_true', help="No interaction. Suitable for Slurm Job launcher")
parser.add_argument('--fid_folder', default='/scratch', help='where to store FID results')
# Override parameters
parser.add_argument('--consistent', action='store_true', help='If True, overwrite yml file and use consistent sampling')
parser.add_argument('--nsigma', type=int, default=0, help='number of steps per sigmas (or multiplier on number of sigmas if consistent=true)')
parser.add_argument('--step_lr', type=float, default=0, help='sampling.step_lr')
parser.add_argument('--batch_size', type=int, default=0, help='sampling/fid batch size')
parser.add_argument('--begin_ckpt', type=int, default=0, help='sampling.begin_ckpt')
parser.add_argument('--end_ckpt', type=int, default=0, help='sampling.end_ckpt')
parser.add_argument('--fid_num_samples', type=int, default=0, help='fast_fid.num_samples')
parser.add_argument('--adam', action='store_true', help='If True, uses adam_beta instead of the ones in config')
parser.add_argument('--adam_beta', nargs=2, type=float, default=(0.9, 0.999))
parser.add_argument('--D_adam', action='store_true', help='If True, uses D_adam_beta with Discriminator instead of the ones in config')
parser.add_argument('--D_adam_beta', nargs=2, type=float, default=(0.9, 0.999))
parser.add_argument('--D_steps', type=int, default=0, help='Number of discriminator per score network steps')
# Adversarial option
parser.add_argument('--adversarial', action='store_true', help='Adversarial Denoising autoencoder')
# Loss functions options
parser.add_argument('--target', type=str, default='gaussian', help='dae: predict x and apply a sigmoid, gaussian:(x - x_tilde)/sigma')
parser.add_argument('--loss', type=str, default='l2', help='Amongst "l1", "l2" and "l1_msssim"')
# Model
parser.add_argument('--std', action='store_true', help='divide score network by variance (so its always standardized)')
parser.add_argument('--no_dilation', action='store_true',
help='If True, do not use dilation anywhere in architecture. This should reduces memory requirement and increase speed significantly.')
# Find best hyperameters
parser.add_argument('--compute_approximate_sigma_max', action='store_true',
help='sigma_max must be the maximum pairwise eucledian distance between points, we can get a really rough estimate by only looking at mini-batches pairwise distances. This will run for one epoch.')
args = parser.parse_args()
args.log_path = os.path.join(args.exp, 'logs', args.doc)
#### Specific to ComputeCanada Beluga server
#args.data_folder = os.environ["SLURM_TMPDIR"] + "/" + args.data_folder
#args.fid_folder = args.fid_folder + "/" + os.environ["USER"] + "/Output" + "/Extra"
os.makedirs(args.fid_folder, exist_ok=True)
config = get_config(args)
args.image_folder_denoised = args.image_folder
tb_path = os.path.join(args.exp, 'tensorboard', args.doc)
args.level = getattr(logging, args.verbose.upper(), None)
validate_args(args)
if args.train:
if not args.resume_training:
ask_overwrite_folder(args.log_path, no_interactions=args.ni)
ask_overwrite_folder(tb_path, no_interactions=args.ni)
with open(os.path.join(args.log_path, 'config.yml'), 'w') as f:
yaml.dump(config, f, default_flow_style=False)
args.tb_logger = tb.SummaryWriter(log_dir=tb_path)
args.log_sample_path = os.path.join(args.log_path, 'samples')
os.makedirs(args.log_sample_path, exist_ok=True)
elif not args.eval:
path_dir = 'image_samples'
os.makedirs(os.path.join(args.exp, path_dir), exist_ok=True)
args.image_folder = os.path.join(args.exp, path_dir, args.image_folder)
args.image_folder_denoised = os.path.join(args.exp, path_dir + '_denoised', args.image_folder_denoised)
ask_overwrite_folder(args.image_folder, no_interactions=args.ni)
ask_overwrite_folder(args.image_folder_denoised, no_interactions=args.ni)
# setup logger
logger = logging.getLogger()
logger.setLevel(args.level)
handlers = [logging.StreamHandler()]
if args.train:
handlers += [logging.FileHandler(os.path.join(args.log_path, 'stdout.txt'))]
formatter = logging.Formatter('%(levelname)s - %(filename)s - %(asctime)s - %(message)s')
for h in handlers:
h.setFormatter(formatter)
logger.addHandler(h)
# add device
# device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
args.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
logging.info("Using device: {}".format(args.device)) # TODO can i do that instead of args.device
# set random seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.benchmark = True
return args, config
def ask_overwrite_folder(folder, no_interactions, fatal=True):
if not os.path.exists(folder):
os.makedirs(folder)
elif no_interactions:
shutil.rmtree(folder)
os.makedirs(folder)
else:
response = input(f"Folder '{folder}' already exists. Overwrite? (Y/N)")
if response.upper() == 'Y':
shutil.rmtree(folder)
os.makedirs(folder)
elif fatal:
print("Output image folder exists. Program halted.")
sys.exit(0)
def validate_args(args):
assert args.target in ["gaussian", "dae"]
assert isinstance(args.level, int)
def get_runner(args):
assert args.train + args.sample + args.fast_fid + args.inception + args.eval + args.stackedmnist == 1
if args.sample:
return SampleRunner
elif args.fast_fid:
return FidRunner
elif args.eval:
return EvalRunner
elif args.inception:
return InceptionRunner
elif args.stackedmnist:
return StackedMNISTRunner
else:
return TrainRunner
def main():
args, config = parse_args_and_config()
print_config(config)
get_runner(args)(args, config).run()
return 0
if __name__ == '__main__':
sys.exit(main())