-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathpolicy_v_network.py
executable file
·64 lines (44 loc) · 3.01 KB
/
policy_v_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from networks import *
class PolicyVNetwork(Network):
def __init__(self, conf):
""" Set up remaining layers, objective and loss functions, gradient
compute and apply ops, network parameter synchronization ops, and
summary ops. """
super(PolicyVNetwork, self).__init__(conf)
self.entropy_regularisation_strength = conf['entropy_regularisation_strength']
with tf.device(conf['device']):
with tf.name_scope(self.name):
self.critic_target_ph = tf.placeholder(
"float32", [None], name='target')
self.adv_actor_ph = tf.placeholder("float", [None], name='advantage')
# Final actor layer
layer_name = 'actor_output'
_, _, self.output_layer_pi = softmax(layer_name, self.output, self.num_actions)
# Final critic layer
_, _, self.output_layer_v = fc('critic_output', self.output, 1, activation="linear")
# Avoiding log(0) by adding a very small quantity (1e-30) to output.
self.log_output_layer_pi = tf.log(tf.add(self.output_layer_pi, tf.constant(1e-30)),
name=layer_name + '_log_policy')
# Entropy: sum_a (-p_a ln p_a)
self.output_layer_entropy = tf.reduce_sum(tf.multiply(
tf.constant(-1.0),
tf.multiply(self.output_layer_pi, self.log_output_layer_pi)), reduction_indices=1)
self.output_layer_v = tf.reshape(self.output_layer_v, [-1])
# Advantage critic
self.critic_loss = tf.subtract(self.critic_target_ph, self.output_layer_v)
log_output_selected_action = tf.reduce_sum(
tf.multiply(self.log_output_layer_pi, self.selected_action_ph),
reduction_indices=1)
self.actor_objective_advantage_term = tf.multiply(log_output_selected_action, self.adv_actor_ph)
self.actor_objective_entropy_term = tf.multiply(self.entropy_regularisation_strength, self.output_layer_entropy)
self.actor_objective_mean = tf.reduce_mean(tf.multiply(tf.constant(-1.0),
tf.add(self.actor_objective_advantage_term, self.actor_objective_entropy_term)),
name='mean_actor_objective')
self.critic_loss_mean = tf.reduce_mean(tf.scalar_mul(0.25, tf.pow(self.critic_loss, 2)), name='mean_critic_loss')
# Loss scaling is used because the learning rate was initially runed tuned to be used with
# max_local_steps = 5 and summing over timesteps, which is now replaced with the mean.
self.loss = tf.scalar_mul(self.loss_scaling, self.actor_objective_mean + self.critic_loss_mean)
class NIPSPolicyVNetwork(PolicyVNetwork, NIPSNetwork):
pass
class NaturePolicyVNetwork(PolicyVNetwork, NatureNetwork):
pass