-
Notifications
You must be signed in to change notification settings - Fork 37
/
mini_from_mini80_ssl_sl_1shot_5way.log
20319 lines (20319 loc) · 709 KB
/
mini_from_mini80_ssl_sl_1shot_5way.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{'dataset': 'MiniImageNet',
'gamma': 0.5,
'gpu': '0',
'init_weights': './saves/initialization/miniimagenet/mini_imagenet_amdim_ndf192_rkhs1536_rd8_cpt.pth',
'lr': 0.0001,
'max_epoch': 100,
'model_type': 'AmdimNet',
'nd': 8,
'ndf': 192,
'query': 15,
'rkhs': 1536,
'shot': 1,
'step_size': 10,
'temperature': 128.0,
'way': 5}
using gpu: 0
Using a 128x128 encoder
epoch 1, train 1/100, loss=1.9023 acc=0.3733
epoch 1, train 2/100, loss=1.4098 acc=0.5200
epoch 1, train 3/100, loss=1.6199 acc=0.4533
epoch 1, train 4/100, loss=0.9387 acc=0.6933
epoch 1, train 5/100, loss=1.6370 acc=0.4667
epoch 1, train 6/100, loss=0.8001 acc=0.7467
epoch 1, train 7/100, loss=2.5595 acc=0.3600
epoch 1, train 8/100, loss=1.9584 acc=0.4933
epoch 1, train 9/100, loss=1.1044 acc=0.7467
epoch 1, train 10/100, loss=1.8556 acc=0.4800
epoch 1, train 11/100, loss=2.6648 acc=0.4133
epoch 1, train 12/100, loss=1.2956 acc=0.5733
epoch 1, train 13/100, loss=2.4823 acc=0.4000
epoch 1, train 14/100, loss=1.5357 acc=0.5733
epoch 1, train 15/100, loss=1.9452 acc=0.5067
epoch 1, train 16/100, loss=2.4739 acc=0.3467
epoch 1, train 17/100, loss=2.9666 acc=0.2800
epoch 1, train 18/100, loss=1.3881 acc=0.5200
epoch 1, train 19/100, loss=1.5735 acc=0.5867
epoch 1, train 20/100, loss=1.5086 acc=0.5600
epoch 1, train 21/100, loss=1.8745 acc=0.3733
epoch 1, train 22/100, loss=1.4836 acc=0.5200
epoch 1, train 23/100, loss=2.2092 acc=0.4400
epoch 1, train 24/100, loss=1.1700 acc=0.6667
epoch 1, train 25/100, loss=1.5363 acc=0.5467
epoch 1, train 26/100, loss=1.6967 acc=0.5200
epoch 1, train 27/100, loss=2.0946 acc=0.5200
epoch 1, train 28/100, loss=1.7395 acc=0.4267
epoch 1, train 29/100, loss=2.1568 acc=0.4133
epoch 1, train 30/100, loss=1.4641 acc=0.5067
epoch 1, train 31/100, loss=1.7844 acc=0.4933
epoch 1, train 32/100, loss=1.3183 acc=0.5867
epoch 1, train 33/100, loss=2.0663 acc=0.4667
epoch 1, train 34/100, loss=1.2210 acc=0.6133
epoch 1, train 35/100, loss=1.7036 acc=0.5467
epoch 1, train 36/100, loss=1.2273 acc=0.6000
epoch 1, train 37/100, loss=1.7469 acc=0.4133
epoch 1, train 38/100, loss=1.3192 acc=0.6800
epoch 1, train 39/100, loss=1.1733 acc=0.6000
epoch 1, train 40/100, loss=0.8714 acc=0.6800
epoch 1, train 41/100, loss=2.2058 acc=0.5600
epoch 1, train 42/100, loss=1.3029 acc=0.6267
epoch 1, train 43/100, loss=1.1498 acc=0.6133
epoch 1, train 44/100, loss=0.4506 acc=0.8400
epoch 1, train 45/100, loss=0.9091 acc=0.6933
epoch 1, train 46/100, loss=0.9238 acc=0.7200
epoch 1, train 47/100, loss=1.1415 acc=0.5600
epoch 1, train 48/100, loss=1.3507 acc=0.5333
epoch 1, train 49/100, loss=1.9061 acc=0.5733
epoch 1, train 50/100, loss=1.6750 acc=0.4533
epoch 1, train 51/100, loss=1.1637 acc=0.6267
epoch 1, train 52/100, loss=1.3034 acc=0.6133
epoch 1, train 53/100, loss=1.2331 acc=0.6267
epoch 1, train 54/100, loss=2.2395 acc=0.4400
epoch 1, train 55/100, loss=1.1708 acc=0.5867
epoch 1, train 56/100, loss=1.6965 acc=0.5333
epoch 1, train 57/100, loss=0.7722 acc=0.7333
epoch 1, train 58/100, loss=1.5280 acc=0.4800
epoch 1, train 59/100, loss=1.1725 acc=0.6000
epoch 1, train 60/100, loss=1.6547 acc=0.4800
epoch 1, train 61/100, loss=1.8181 acc=0.5067
epoch 1, train 62/100, loss=1.6181 acc=0.4800
epoch 1, train 63/100, loss=1.3524 acc=0.5867
epoch 1, train 64/100, loss=0.8763 acc=0.7067
epoch 1, train 65/100, loss=1.0406 acc=0.7333
epoch 1, train 66/100, loss=1.3228 acc=0.6267
epoch 1, train 67/100, loss=1.5146 acc=0.5200
epoch 1, train 68/100, loss=1.2768 acc=0.5733
epoch 1, train 69/100, loss=1.7888 acc=0.5333
epoch 1, train 70/100, loss=1.1558 acc=0.6267
epoch 1, train 71/100, loss=2.3126 acc=0.4000
epoch 1, train 72/100, loss=1.3299 acc=0.6133
epoch 1, train 73/100, loss=1.3845 acc=0.5333
epoch 1, train 74/100, loss=1.4222 acc=0.6000
epoch 1, train 75/100, loss=1.0219 acc=0.6267
epoch 1, train 76/100, loss=1.2777 acc=0.6933
epoch 1, train 77/100, loss=1.2907 acc=0.6400
epoch 1, train 78/100, loss=1.4662 acc=0.7067
epoch 1, train 79/100, loss=1.1857 acc=0.6133
epoch 1, train 80/100, loss=0.8520 acc=0.6933
epoch 1, train 81/100, loss=1.5041 acc=0.5600
epoch 1, train 82/100, loss=1.1943 acc=0.6667
epoch 1, train 83/100, loss=0.5101 acc=0.8400
epoch 1, train 84/100, loss=1.1924 acc=0.5867
epoch 1, train 85/100, loss=0.7064 acc=0.7733
epoch 1, train 86/100, loss=1.2435 acc=0.6267
epoch 1, train 87/100, loss=1.7834 acc=0.4933
epoch 1, train 88/100, loss=0.8434 acc=0.7467
epoch 1, train 89/100, loss=1.5870 acc=0.5600
epoch 1, train 90/100, loss=1.9675 acc=0.4400
epoch 1, train 91/100, loss=0.9229 acc=0.6933
epoch 1, train 92/100, loss=3.0856 acc=0.4267
epoch 1, train 93/100, loss=1.1760 acc=0.6267
epoch 1, train 94/100, loss=1.2302 acc=0.6533
epoch 1, train 95/100, loss=1.5430 acc=0.5200
epoch 1, train 96/100, loss=2.0650 acc=0.4267
epoch 1, train 97/100, loss=1.2968 acc=0.5467
epoch 1, train 98/100, loss=1.0294 acc=0.6267
epoch 1, train 99/100, loss=1.2498 acc=0.6800
epoch 1, train 100/100, loss=1.1605 acc=0.6533
best epoch 0, best val acc=0.0000
epoch 1, val, loss=1.8174 acc=0.5497
ETA:4m/6.8h
epoch 2, train 1/100, loss=1.1624 acc=0.6533
epoch 2, train 2/100, loss=0.8396 acc=0.7200
epoch 2, train 3/100, loss=1.8442 acc=0.5467
epoch 2, train 4/100, loss=1.6161 acc=0.5200
epoch 2, train 5/100, loss=2.2154 acc=0.4800
epoch 2, train 6/100, loss=1.4698 acc=0.4933
epoch 2, train 7/100, loss=1.3571 acc=0.6133
epoch 2, train 8/100, loss=1.7582 acc=0.5333
epoch 2, train 9/100, loss=1.2095 acc=0.6400
epoch 2, train 10/100, loss=0.5315 acc=0.8400
epoch 2, train 11/100, loss=1.2638 acc=0.6800
epoch 2, train 12/100, loss=0.9402 acc=0.6800
epoch 2, train 13/100, loss=0.9233 acc=0.6267
epoch 2, train 14/100, loss=0.8952 acc=0.8000
epoch 2, train 15/100, loss=0.7039 acc=0.8000
epoch 2, train 16/100, loss=1.9781 acc=0.3200
epoch 2, train 17/100, loss=0.9059 acc=0.7733
epoch 2, train 18/100, loss=0.9236 acc=0.7200
epoch 2, train 19/100, loss=1.3299 acc=0.6533
epoch 2, train 20/100, loss=1.0642 acc=0.6667
epoch 2, train 21/100, loss=1.2301 acc=0.6400
epoch 2, train 22/100, loss=1.3243 acc=0.5867
epoch 2, train 23/100, loss=1.0401 acc=0.6533
epoch 2, train 24/100, loss=1.1871 acc=0.6533
epoch 2, train 25/100, loss=0.6902 acc=0.8667
epoch 2, train 26/100, loss=1.2294 acc=0.6533
epoch 2, train 27/100, loss=1.8395 acc=0.4533
epoch 2, train 28/100, loss=1.5305 acc=0.5467
epoch 2, train 29/100, loss=1.7264 acc=0.5200
epoch 2, train 30/100, loss=0.9013 acc=0.7333
epoch 2, train 31/100, loss=1.7358 acc=0.6400
epoch 2, train 32/100, loss=1.0798 acc=0.6533
epoch 2, train 33/100, loss=1.0904 acc=0.7600
epoch 2, train 34/100, loss=0.9698 acc=0.6933
epoch 2, train 35/100, loss=0.8193 acc=0.6800
epoch 2, train 36/100, loss=1.3338 acc=0.5467
epoch 2, train 37/100, loss=1.7668 acc=0.5867
epoch 2, train 38/100, loss=1.2358 acc=0.6533
epoch 2, train 39/100, loss=1.0661 acc=0.6667
epoch 2, train 40/100, loss=0.4881 acc=0.8533
epoch 2, train 41/100, loss=0.5381 acc=0.8533
epoch 2, train 42/100, loss=1.3889 acc=0.5467
epoch 2, train 43/100, loss=0.9849 acc=0.7200
epoch 2, train 44/100, loss=1.4830 acc=0.4933
epoch 2, train 45/100, loss=0.9532 acc=0.7333
epoch 2, train 46/100, loss=0.9699 acc=0.7067
epoch 2, train 47/100, loss=2.5361 acc=0.3467
epoch 2, train 48/100, loss=0.9985 acc=0.6533
epoch 2, train 49/100, loss=1.2371 acc=0.6267
epoch 2, train 50/100, loss=1.5492 acc=0.5600
epoch 2, train 51/100, loss=2.0454 acc=0.4800
epoch 2, train 52/100, loss=1.2212 acc=0.6267
epoch 2, train 53/100, loss=0.9885 acc=0.7333
epoch 2, train 54/100, loss=1.2975 acc=0.6533
epoch 2, train 55/100, loss=1.0386 acc=0.6400
epoch 2, train 56/100, loss=1.6118 acc=0.5867
epoch 2, train 57/100, loss=1.3236 acc=0.6533
epoch 2, train 58/100, loss=2.5606 acc=0.3333
epoch 2, train 59/100, loss=1.4187 acc=0.6267
epoch 2, train 60/100, loss=1.8653 acc=0.5200
epoch 2, train 61/100, loss=1.0212 acc=0.6800
epoch 2, train 62/100, loss=1.4063 acc=0.6133
epoch 2, train 63/100, loss=0.7771 acc=0.7200
epoch 2, train 64/100, loss=2.1215 acc=0.4400
epoch 2, train 65/100, loss=1.6878 acc=0.5333
epoch 2, train 66/100, loss=0.6844 acc=0.7333
epoch 2, train 67/100, loss=1.0193 acc=0.6800
epoch 2, train 68/100, loss=0.8187 acc=0.7467
epoch 2, train 69/100, loss=1.1119 acc=0.6667
epoch 2, train 70/100, loss=0.8679 acc=0.7333
epoch 2, train 71/100, loss=1.9961 acc=0.4667
epoch 2, train 72/100, loss=1.3780 acc=0.5333
epoch 2, train 73/100, loss=1.5761 acc=0.6533
epoch 2, train 74/100, loss=1.4566 acc=0.5600
epoch 2, train 75/100, loss=0.9883 acc=0.6800
epoch 2, train 76/100, loss=0.9583 acc=0.7067
epoch 2, train 77/100, loss=0.3464 acc=0.8933
epoch 2, train 78/100, loss=0.8328 acc=0.7600
epoch 2, train 79/100, loss=0.6406 acc=0.8000
epoch 2, train 80/100, loss=0.6546 acc=0.7600
epoch 2, train 81/100, loss=1.1235 acc=0.6667
epoch 2, train 82/100, loss=1.3074 acc=0.6133
epoch 2, train 83/100, loss=0.9125 acc=0.6933
epoch 2, train 84/100, loss=0.6546 acc=0.7733
epoch 2, train 85/100, loss=0.6759 acc=0.8133
epoch 2, train 86/100, loss=1.0048 acc=0.7200
epoch 2, train 87/100, loss=1.7328 acc=0.5467
epoch 2, train 88/100, loss=1.4789 acc=0.5600
epoch 2, train 89/100, loss=1.0378 acc=0.7200
epoch 2, train 90/100, loss=1.3068 acc=0.6133
epoch 2, train 91/100, loss=1.5869 acc=0.5600
epoch 2, train 92/100, loss=1.8932 acc=0.4400
epoch 2, train 93/100, loss=0.4778 acc=0.8533
epoch 2, train 94/100, loss=1.2959 acc=0.6267
epoch 2, train 95/100, loss=1.3336 acc=0.6667
epoch 2, train 96/100, loss=2.3936 acc=0.3867
epoch 2, train 97/100, loss=1.7424 acc=0.5467
epoch 2, train 98/100, loss=1.2260 acc=0.6800
epoch 2, train 99/100, loss=1.2363 acc=0.6400
epoch 2, train 100/100, loss=0.9492 acc=0.7333
best epoch 1, best val acc=0.5497
epoch 2, val, loss=1.4791 acc=0.6045
ETA:8m/6.6h
epoch 3, train 1/100, loss=2.0808 acc=0.4133
epoch 3, train 2/100, loss=1.1882 acc=0.6533
epoch 3, train 3/100, loss=1.3148 acc=0.7067
epoch 3, train 4/100, loss=1.1454 acc=0.6800
epoch 3, train 5/100, loss=1.0904 acc=0.6267
epoch 3, train 6/100, loss=1.0093 acc=0.6667
epoch 3, train 7/100, loss=1.2056 acc=0.6267
epoch 3, train 8/100, loss=0.9757 acc=0.7200
epoch 3, train 9/100, loss=0.5459 acc=0.7733
epoch 3, train 10/100, loss=1.3677 acc=0.5200
epoch 3, train 11/100, loss=1.8659 acc=0.4533
epoch 3, train 12/100, loss=1.2141 acc=0.6533
epoch 3, train 13/100, loss=1.0072 acc=0.6667
epoch 3, train 14/100, loss=0.6076 acc=0.7867
epoch 3, train 15/100, loss=0.8173 acc=0.7333
epoch 3, train 16/100, loss=0.5769 acc=0.7600
epoch 3, train 17/100, loss=1.0907 acc=0.6400
epoch 3, train 18/100, loss=0.6842 acc=0.7867
epoch 3, train 19/100, loss=1.0473 acc=0.7600
epoch 3, train 20/100, loss=0.6288 acc=0.8667
epoch 3, train 21/100, loss=1.2130 acc=0.6533
epoch 3, train 22/100, loss=1.5339 acc=0.6800
epoch 3, train 23/100, loss=1.2208 acc=0.6400
epoch 3, train 24/100, loss=0.9342 acc=0.6800
epoch 3, train 25/100, loss=0.8582 acc=0.7467
epoch 3, train 26/100, loss=1.3053 acc=0.6400
epoch 3, train 27/100, loss=0.6544 acc=0.8133
epoch 3, train 28/100, loss=0.6554 acc=0.7733
epoch 3, train 29/100, loss=0.8527 acc=0.7600
epoch 3, train 30/100, loss=1.0383 acc=0.6933
epoch 3, train 31/100, loss=0.9777 acc=0.6933
epoch 3, train 32/100, loss=2.1343 acc=0.4533
epoch 3, train 33/100, loss=1.6112 acc=0.5600
epoch 3, train 34/100, loss=1.2297 acc=0.6800
epoch 3, train 35/100, loss=1.2946 acc=0.6667
epoch 3, train 36/100, loss=0.5260 acc=0.7867
epoch 3, train 37/100, loss=0.3933 acc=0.8267
epoch 3, train 38/100, loss=1.0099 acc=0.7333
epoch 3, train 39/100, loss=0.4633 acc=0.8533
epoch 3, train 40/100, loss=1.0953 acc=0.7200
epoch 3, train 41/100, loss=0.4912 acc=0.8267
epoch 3, train 42/100, loss=0.5086 acc=0.8133
epoch 3, train 43/100, loss=0.7447 acc=0.7733
epoch 3, train 44/100, loss=1.4937 acc=0.6267
epoch 3, train 45/100, loss=0.8024 acc=0.7600
epoch 3, train 46/100, loss=0.4851 acc=0.8800
epoch 3, train 47/100, loss=2.5690 acc=0.4000
epoch 3, train 48/100, loss=1.0270 acc=0.7467
epoch 3, train 49/100, loss=0.7602 acc=0.8000
epoch 3, train 50/100, loss=1.5565 acc=0.5200
epoch 3, train 51/100, loss=1.1483 acc=0.6533
epoch 3, train 52/100, loss=0.9526 acc=0.6667
epoch 3, train 53/100, loss=0.8829 acc=0.6933
epoch 3, train 54/100, loss=1.1528 acc=0.6800
epoch 3, train 55/100, loss=0.5119 acc=0.8533
epoch 3, train 56/100, loss=0.8004 acc=0.7733
epoch 3, train 57/100, loss=1.9664 acc=0.5333
epoch 3, train 58/100, loss=0.9149 acc=0.7067
epoch 3, train 59/100, loss=0.7142 acc=0.7600
epoch 3, train 60/100, loss=0.8451 acc=0.6800
epoch 3, train 61/100, loss=1.4812 acc=0.4800
epoch 3, train 62/100, loss=0.3574 acc=0.8667
epoch 3, train 63/100, loss=1.5528 acc=0.6133
epoch 3, train 64/100, loss=0.7625 acc=0.8133
epoch 3, train 65/100, loss=1.0353 acc=0.6267
epoch 3, train 66/100, loss=1.6674 acc=0.5600
epoch 3, train 67/100, loss=1.3752 acc=0.6400
epoch 3, train 68/100, loss=1.4380 acc=0.6000
epoch 3, train 69/100, loss=0.5723 acc=0.8267
epoch 3, train 70/100, loss=0.9579 acc=0.7600
epoch 3, train 71/100, loss=0.6544 acc=0.7867
epoch 3, train 72/100, loss=1.2452 acc=0.6933
epoch 3, train 73/100, loss=1.3417 acc=0.6400
epoch 3, train 74/100, loss=0.7905 acc=0.7200
epoch 3, train 75/100, loss=0.8846 acc=0.7333
epoch 3, train 76/100, loss=1.2935 acc=0.4933
epoch 3, train 77/100, loss=1.6094 acc=0.5733
epoch 3, train 78/100, loss=2.0832 acc=0.4000
epoch 3, train 79/100, loss=0.9648 acc=0.7867
epoch 3, train 80/100, loss=0.5238 acc=0.8267
epoch 3, train 81/100, loss=1.4250 acc=0.5733
epoch 3, train 82/100, loss=0.9066 acc=0.6933
epoch 3, train 83/100, loss=0.8412 acc=0.7733
epoch 3, train 84/100, loss=1.3900 acc=0.6533
epoch 3, train 85/100, loss=0.5356 acc=0.8400
epoch 3, train 86/100, loss=1.2601 acc=0.5600
epoch 3, train 87/100, loss=1.0843 acc=0.6667
epoch 3, train 88/100, loss=0.9879 acc=0.7067
epoch 3, train 89/100, loss=1.4603 acc=0.5733
epoch 3, train 90/100, loss=1.0163 acc=0.7200
epoch 3, train 91/100, loss=0.8839 acc=0.8000
epoch 3, train 92/100, loss=0.3634 acc=0.8667
epoch 3, train 93/100, loss=0.4786 acc=0.8400
epoch 3, train 94/100, loss=0.5538 acc=0.7733
epoch 3, train 95/100, loss=1.2856 acc=0.6533
epoch 3, train 96/100, loss=1.3649 acc=0.6000
epoch 3, train 97/100, loss=0.6735 acc=0.7600
epoch 3, train 98/100, loss=1.9632 acc=0.4933
epoch 3, train 99/100, loss=1.1315 acc=0.6933
epoch 3, train 100/100, loss=1.7777 acc=0.6000
best epoch 2, best val acc=0.6045
epoch 3, val, loss=1.2459 acc=0.6205
ETA:12m/6.6h
epoch 4, train 1/100, loss=1.0261 acc=0.6667
epoch 4, train 2/100, loss=3.7523 acc=0.2400
epoch 4, train 3/100, loss=0.1994 acc=0.9067
epoch 4, train 4/100, loss=0.7658 acc=0.7333
epoch 4, train 5/100, loss=1.5908 acc=0.5467
epoch 4, train 6/100, loss=0.4747 acc=0.8533
epoch 4, train 7/100, loss=1.1036 acc=0.7200
epoch 4, train 8/100, loss=0.9782 acc=0.6933
epoch 4, train 9/100, loss=0.7126 acc=0.8000
epoch 4, train 10/100, loss=1.2706 acc=0.6800
epoch 4, train 11/100, loss=2.2218 acc=0.3733
epoch 4, train 12/100, loss=1.8825 acc=0.5067
epoch 4, train 13/100, loss=1.4182 acc=0.5467
epoch 4, train 14/100, loss=0.4662 acc=0.8267
epoch 4, train 15/100, loss=1.1154 acc=0.6400
epoch 4, train 16/100, loss=0.7587 acc=0.7600
epoch 4, train 17/100, loss=0.7463 acc=0.7600
epoch 4, train 18/100, loss=1.8608 acc=0.4667
epoch 4, train 19/100, loss=1.8109 acc=0.5333
epoch 4, train 20/100, loss=1.0021 acc=0.6000
epoch 4, train 21/100, loss=1.1862 acc=0.6133
epoch 4, train 22/100, loss=1.0330 acc=0.6533
epoch 4, train 23/100, loss=1.2939 acc=0.7067
epoch 4, train 24/100, loss=0.7552 acc=0.7733
epoch 4, train 25/100, loss=0.4680 acc=0.8267
epoch 4, train 26/100, loss=0.5995 acc=0.8667
epoch 4, train 27/100, loss=0.2657 acc=0.8933
epoch 4, train 28/100, loss=0.2846 acc=0.9200
epoch 4, train 29/100, loss=0.7857 acc=0.7733
epoch 4, train 30/100, loss=1.1575 acc=0.5867
epoch 4, train 31/100, loss=1.2732 acc=0.6000
epoch 4, train 32/100, loss=1.1364 acc=0.6533
epoch 4, train 33/100, loss=1.5756 acc=0.5333
epoch 4, train 34/100, loss=1.1088 acc=0.6000
epoch 4, train 35/100, loss=1.0227 acc=0.7200
epoch 4, train 36/100, loss=1.3109 acc=0.6800
epoch 4, train 37/100, loss=2.2696 acc=0.4133
epoch 4, train 38/100, loss=1.1110 acc=0.6667
epoch 4, train 39/100, loss=0.5656 acc=0.8667
epoch 4, train 40/100, loss=1.0567 acc=0.6800
epoch 4, train 41/100, loss=2.8437 acc=0.4800
epoch 4, train 42/100, loss=0.4263 acc=0.8133
epoch 4, train 43/100, loss=1.6428 acc=0.6000
epoch 4, train 44/100, loss=1.1962 acc=0.6667
epoch 4, train 45/100, loss=0.7303 acc=0.7467
epoch 4, train 46/100, loss=0.6202 acc=0.7867
epoch 4, train 47/100, loss=0.6535 acc=0.7733
epoch 4, train 48/100, loss=1.3309 acc=0.6667
epoch 4, train 49/100, loss=1.2282 acc=0.6933
epoch 4, train 50/100, loss=0.7980 acc=0.7600
epoch 4, train 51/100, loss=0.2954 acc=0.8933
epoch 4, train 52/100, loss=0.8769 acc=0.6800
epoch 4, train 53/100, loss=1.6455 acc=0.5600
epoch 4, train 54/100, loss=0.7645 acc=0.7600
epoch 4, train 55/100, loss=0.6697 acc=0.8133
epoch 4, train 56/100, loss=0.7320 acc=0.7200
epoch 4, train 57/100, loss=0.8559 acc=0.7067
epoch 4, train 58/100, loss=0.7013 acc=0.7333
epoch 4, train 59/100, loss=1.1102 acc=0.7067
epoch 4, train 60/100, loss=0.7309 acc=0.7333
epoch 4, train 61/100, loss=0.3647 acc=0.9200
epoch 4, train 62/100, loss=0.2662 acc=0.9200
epoch 4, train 63/100, loss=1.1398 acc=0.6533
epoch 4, train 64/100, loss=0.8348 acc=0.7333
epoch 4, train 65/100, loss=1.7200 acc=0.4267
epoch 4, train 66/100, loss=0.5076 acc=0.8133
epoch 4, train 67/100, loss=0.8397 acc=0.6533
epoch 4, train 68/100, loss=0.5846 acc=0.7733
epoch 4, train 69/100, loss=1.0323 acc=0.7733
epoch 4, train 70/100, loss=1.3506 acc=0.6400
epoch 4, train 71/100, loss=0.3544 acc=0.8800
epoch 4, train 72/100, loss=0.4104 acc=0.8800
epoch 4, train 73/100, loss=0.9110 acc=0.6933
epoch 4, train 74/100, loss=0.3344 acc=0.8533
epoch 4, train 75/100, loss=1.0864 acc=0.6133
epoch 4, train 76/100, loss=1.5249 acc=0.6267
epoch 4, train 77/100, loss=1.2672 acc=0.6267
epoch 4, train 78/100, loss=1.7147 acc=0.5333
epoch 4, train 79/100, loss=0.4414 acc=0.8667
epoch 4, train 80/100, loss=0.7631 acc=0.6667
epoch 4, train 81/100, loss=1.0375 acc=0.6800
epoch 4, train 82/100, loss=0.9881 acc=0.7200
epoch 4, train 83/100, loss=0.6401 acc=0.8400
epoch 4, train 84/100, loss=0.7009 acc=0.7600
epoch 4, train 85/100, loss=0.8984 acc=0.7067
epoch 4, train 86/100, loss=1.7091 acc=0.4533
epoch 4, train 87/100, loss=0.5060 acc=0.8133
epoch 4, train 88/100, loss=1.5929 acc=0.6133
epoch 4, train 89/100, loss=2.1363 acc=0.4800
epoch 4, train 90/100, loss=1.4528 acc=0.5600
epoch 4, train 91/100, loss=0.6198 acc=0.7867
epoch 4, train 92/100, loss=1.5661 acc=0.6000
epoch 4, train 93/100, loss=1.3231 acc=0.5333
epoch 4, train 94/100, loss=1.0067 acc=0.6800
epoch 4, train 95/100, loss=0.9385 acc=0.7200
epoch 4, train 96/100, loss=0.5719 acc=0.8133
epoch 4, train 97/100, loss=0.3424 acc=0.9067
epoch 4, train 98/100, loss=1.1561 acc=0.6533
epoch 4, train 99/100, loss=0.6161 acc=0.8000
epoch 4, train 100/100, loss=0.6680 acc=0.8133
best epoch 3, best val acc=0.6205
epoch 4, val, loss=1.2914 acc=0.6314
ETA:16m/6.5h
epoch 5, train 1/100, loss=0.5476 acc=0.7733
epoch 5, train 2/100, loss=0.4180 acc=0.8933
epoch 5, train 3/100, loss=1.7256 acc=0.5600
epoch 5, train 4/100, loss=0.8814 acc=0.7600
epoch 5, train 5/100, loss=1.1392 acc=0.6533
epoch 5, train 6/100, loss=0.4389 acc=0.8800
epoch 5, train 7/100, loss=1.3702 acc=0.6400
epoch 5, train 8/100, loss=0.7588 acc=0.7867
epoch 5, train 9/100, loss=0.4646 acc=0.8000
epoch 5, train 10/100, loss=0.6861 acc=0.7467
epoch 5, train 11/100, loss=0.2985 acc=0.8933
epoch 5, train 12/100, loss=1.5332 acc=0.5067
epoch 5, train 13/100, loss=0.3815 acc=0.8667
epoch 5, train 14/100, loss=0.8297 acc=0.8000
epoch 5, train 15/100, loss=0.2193 acc=0.9333
epoch 5, train 16/100, loss=0.7039 acc=0.8000
epoch 5, train 17/100, loss=1.2478 acc=0.7067
epoch 5, train 18/100, loss=1.4933 acc=0.5733
epoch 5, train 19/100, loss=0.5340 acc=0.8400
epoch 5, train 20/100, loss=0.4309 acc=0.8800
epoch 5, train 21/100, loss=0.3688 acc=0.8533
epoch 5, train 22/100, loss=0.5189 acc=0.8533
epoch 5, train 23/100, loss=1.1147 acc=0.6000
epoch 5, train 24/100, loss=0.7228 acc=0.7467
epoch 5, train 25/100, loss=1.0165 acc=0.6667
epoch 5, train 26/100, loss=0.6002 acc=0.7867
epoch 5, train 27/100, loss=1.1226 acc=0.6933
epoch 5, train 28/100, loss=0.4398 acc=0.8533
epoch 5, train 29/100, loss=0.4051 acc=0.8667
epoch 5, train 30/100, loss=0.5442 acc=0.8000
epoch 5, train 31/100, loss=2.0043 acc=0.5333
epoch 5, train 32/100, loss=1.1878 acc=0.6800
epoch 5, train 33/100, loss=0.7717 acc=0.7467
epoch 5, train 34/100, loss=0.6019 acc=0.7733
epoch 5, train 35/100, loss=0.5022 acc=0.7867
epoch 5, train 36/100, loss=0.9507 acc=0.6800
epoch 5, train 37/100, loss=1.1416 acc=0.6800
epoch 5, train 38/100, loss=0.7561 acc=0.7200
epoch 5, train 39/100, loss=1.1247 acc=0.5600
epoch 5, train 40/100, loss=0.8472 acc=0.7600
epoch 5, train 41/100, loss=0.5512 acc=0.7733
epoch 5, train 42/100, loss=1.3611 acc=0.6000
epoch 5, train 43/100, loss=0.7746 acc=0.7467
epoch 5, train 44/100, loss=0.5291 acc=0.8267
epoch 5, train 45/100, loss=2.0633 acc=0.4400
epoch 5, train 46/100, loss=0.8580 acc=0.7067
epoch 5, train 47/100, loss=0.8837 acc=0.7600
epoch 5, train 48/100, loss=0.4036 acc=0.8533
epoch 5, train 49/100, loss=0.5435 acc=0.8267
epoch 5, train 50/100, loss=0.9867 acc=0.7200
epoch 5, train 51/100, loss=0.0863 acc=0.9733
epoch 5, train 52/100, loss=0.5510 acc=0.7867
epoch 5, train 53/100, loss=1.1966 acc=0.6400
epoch 5, train 54/100, loss=1.1021 acc=0.7600
epoch 5, train 55/100, loss=0.5299 acc=0.8133
epoch 5, train 56/100, loss=0.9253 acc=0.7467
epoch 5, train 57/100, loss=0.9176 acc=0.7067
epoch 5, train 58/100, loss=0.1178 acc=0.9467
epoch 5, train 59/100, loss=1.4966 acc=0.6400
epoch 5, train 60/100, loss=1.5760 acc=0.5333
epoch 5, train 61/100, loss=0.8726 acc=0.7733
epoch 5, train 62/100, loss=0.9742 acc=0.6933
epoch 5, train 63/100, loss=1.5112 acc=0.4667
epoch 5, train 64/100, loss=0.8549 acc=0.7333
epoch 5, train 65/100, loss=2.0019 acc=0.5200
epoch 5, train 66/100, loss=1.0923 acc=0.7467
epoch 5, train 67/100, loss=0.6666 acc=0.7867
epoch 5, train 68/100, loss=0.7446 acc=0.7067
epoch 5, train 69/100, loss=0.6770 acc=0.8000
epoch 5, train 70/100, loss=0.9379 acc=0.6533
epoch 5, train 71/100, loss=1.1769 acc=0.6133
epoch 5, train 72/100, loss=0.8103 acc=0.7200
epoch 5, train 73/100, loss=2.1981 acc=0.4667
epoch 5, train 74/100, loss=0.9305 acc=0.6667
epoch 5, train 75/100, loss=0.7599 acc=0.7733
epoch 5, train 76/100, loss=1.0832 acc=0.7067
epoch 5, train 77/100, loss=0.8746 acc=0.7733
epoch 5, train 78/100, loss=0.7144 acc=0.7467
epoch 5, train 79/100, loss=0.9973 acc=0.7733
epoch 5, train 80/100, loss=0.7313 acc=0.8267
epoch 5, train 81/100, loss=1.0247 acc=0.7067
epoch 5, train 82/100, loss=0.9067 acc=0.6800
epoch 5, train 83/100, loss=1.8353 acc=0.5067
epoch 5, train 84/100, loss=0.6946 acc=0.7467
epoch 5, train 85/100, loss=0.6887 acc=0.7467
epoch 5, train 86/100, loss=1.4253 acc=0.5867
epoch 5, train 87/100, loss=1.1328 acc=0.6133
epoch 5, train 88/100, loss=0.7281 acc=0.7467
epoch 5, train 89/100, loss=0.9414 acc=0.7333
epoch 5, train 90/100, loss=1.1340 acc=0.6667
epoch 5, train 91/100, loss=0.7838 acc=0.7733
epoch 5, train 92/100, loss=0.7041 acc=0.7867
epoch 5, train 93/100, loss=1.1054 acc=0.7200
epoch 5, train 94/100, loss=1.7541 acc=0.5467
epoch 5, train 95/100, loss=0.3119 acc=0.9200
epoch 5, train 96/100, loss=1.4456 acc=0.5867
epoch 5, train 97/100, loss=0.5046 acc=0.8400
epoch 5, train 98/100, loss=1.5965 acc=0.5200
epoch 5, train 99/100, loss=1.1170 acc=0.6667
epoch 5, train 100/100, loss=0.8087 acc=0.7600
best epoch 4, best val acc=0.6314
epoch 5, val, loss=1.2069 acc=0.6584
ETA:20m/6.5h
epoch 6, train 1/100, loss=1.6970 acc=0.5467
epoch 6, train 2/100, loss=0.9447 acc=0.6800
epoch 6, train 3/100, loss=0.7483 acc=0.7600
epoch 6, train 4/100, loss=0.7432 acc=0.7333
epoch 6, train 5/100, loss=0.6378 acc=0.8133
epoch 6, train 6/100, loss=0.4641 acc=0.8533
epoch 6, train 7/100, loss=0.8957 acc=0.6800
epoch 6, train 8/100, loss=0.6220 acc=0.7733
epoch 6, train 9/100, loss=1.0987 acc=0.6133
epoch 6, train 10/100, loss=0.4102 acc=0.8400
epoch 6, train 11/100, loss=0.4623 acc=0.8533
epoch 6, train 12/100, loss=0.4654 acc=0.7733
epoch 6, train 13/100, loss=0.4368 acc=0.8533
epoch 6, train 14/100, loss=1.1612 acc=0.6400
epoch 6, train 15/100, loss=0.8579 acc=0.7600
epoch 6, train 16/100, loss=0.4931 acc=0.8000
epoch 6, train 17/100, loss=0.4770 acc=0.9067
epoch 6, train 18/100, loss=1.5427 acc=0.6000
epoch 6, train 19/100, loss=1.2610 acc=0.6533
epoch 6, train 20/100, loss=1.2152 acc=0.7333
epoch 6, train 21/100, loss=1.2698 acc=0.6267
epoch 6, train 22/100, loss=0.5698 acc=0.8000
epoch 6, train 23/100, loss=0.7256 acc=0.7333
epoch 6, train 24/100, loss=1.1242 acc=0.6133
epoch 6, train 25/100, loss=0.7507 acc=0.7600
epoch 6, train 26/100, loss=0.6019 acc=0.8400
epoch 6, train 27/100, loss=0.5091 acc=0.8400
epoch 6, train 28/100, loss=0.6106 acc=0.7333
epoch 6, train 29/100, loss=1.2884 acc=0.5733
epoch 6, train 30/100, loss=0.8978 acc=0.6133
epoch 6, train 31/100, loss=0.9640 acc=0.6933
epoch 6, train 32/100, loss=0.8121 acc=0.7467
epoch 6, train 33/100, loss=0.7079 acc=0.7333
epoch 6, train 34/100, loss=1.5605 acc=0.5867
epoch 6, train 35/100, loss=0.9803 acc=0.6667
epoch 6, train 36/100, loss=1.9968 acc=0.5200
epoch 6, train 37/100, loss=1.0039 acc=0.6933
epoch 6, train 38/100, loss=0.3117 acc=0.9200
epoch 6, train 39/100, loss=1.1175 acc=0.6800
epoch 6, train 40/100, loss=1.2272 acc=0.5867
epoch 6, train 41/100, loss=1.2785 acc=0.6000
epoch 6, train 42/100, loss=0.3985 acc=0.8933
epoch 6, train 43/100, loss=1.2894 acc=0.6933
epoch 6, train 44/100, loss=1.1329 acc=0.6533
epoch 6, train 45/100, loss=1.8551 acc=0.5067
epoch 6, train 46/100, loss=1.1846 acc=0.7333
epoch 6, train 47/100, loss=0.6901 acc=0.7333
epoch 6, train 48/100, loss=0.4240 acc=0.8933
epoch 6, train 49/100, loss=0.5783 acc=0.8133
epoch 6, train 50/100, loss=0.8803 acc=0.6533
epoch 6, train 51/100, loss=0.4837 acc=0.8533
epoch 6, train 52/100, loss=0.7836 acc=0.7600
epoch 6, train 53/100, loss=0.2895 acc=0.8933
epoch 6, train 54/100, loss=0.5205 acc=0.8533
epoch 6, train 55/100, loss=1.9792 acc=0.5067
epoch 6, train 56/100, loss=0.6581 acc=0.7467
epoch 6, train 57/100, loss=0.5670 acc=0.7867
epoch 6, train 58/100, loss=0.9665 acc=0.6933
epoch 6, train 59/100, loss=1.3638 acc=0.5467
epoch 6, train 60/100, loss=0.8163 acc=0.7467
epoch 6, train 61/100, loss=0.8224 acc=0.7600
epoch 6, train 62/100, loss=0.3267 acc=0.8800
epoch 6, train 63/100, loss=0.8040 acc=0.7467
epoch 6, train 64/100, loss=0.1717 acc=0.9333
epoch 6, train 65/100, loss=1.0254 acc=0.7067
epoch 6, train 66/100, loss=0.8132 acc=0.7467
epoch 6, train 67/100, loss=0.4782 acc=0.8133
epoch 6, train 68/100, loss=1.1183 acc=0.6667
epoch 6, train 69/100, loss=0.5456 acc=0.8400
epoch 6, train 70/100, loss=0.8297 acc=0.7467
epoch 6, train 71/100, loss=1.7746 acc=0.5067
epoch 6, train 72/100, loss=0.7353 acc=0.7600
epoch 6, train 73/100, loss=1.1106 acc=0.6533
epoch 6, train 74/100, loss=0.4863 acc=0.7867
epoch 6, train 75/100, loss=0.9599 acc=0.7733
epoch 6, train 76/100, loss=1.0698 acc=0.7600
epoch 6, train 77/100, loss=1.7973 acc=0.5067
epoch 6, train 78/100, loss=0.9913 acc=0.6933
epoch 6, train 79/100, loss=1.0383 acc=0.7200
epoch 6, train 80/100, loss=0.6213 acc=0.8133
epoch 6, train 81/100, loss=1.4319 acc=0.6800
epoch 6, train 82/100, loss=1.2972 acc=0.6400
epoch 6, train 83/100, loss=1.3767 acc=0.6400
epoch 6, train 84/100, loss=1.3007 acc=0.6533
epoch 6, train 85/100, loss=1.4951 acc=0.6000
epoch 6, train 86/100, loss=1.2031 acc=0.6800
epoch 6, train 87/100, loss=1.0932 acc=0.6667
epoch 6, train 88/100, loss=0.5374 acc=0.8400
epoch 6, train 89/100, loss=0.8740 acc=0.7733
epoch 6, train 90/100, loss=0.6605 acc=0.8400
epoch 6, train 91/100, loss=0.5293 acc=0.8267
epoch 6, train 92/100, loss=0.6250 acc=0.7733
epoch 6, train 93/100, loss=1.0023 acc=0.7067
epoch 6, train 94/100, loss=0.4629 acc=0.8400
epoch 6, train 95/100, loss=1.2353 acc=0.6267
epoch 6, train 96/100, loss=1.5803 acc=0.5733
epoch 6, train 97/100, loss=0.7178 acc=0.7467
epoch 6, train 98/100, loss=0.8129 acc=0.7067
epoch 6, train 99/100, loss=0.2894 acc=0.8800
epoch 6, train 100/100, loss=1.0795 acc=0.6133
best epoch 5, best val acc=0.6584
epoch 6, val, loss=1.1864 acc=0.6527
ETA:23m/6.5h
epoch 7, train 1/100, loss=0.7731 acc=0.8000
epoch 7, train 2/100, loss=0.6653 acc=0.7733
epoch 7, train 3/100, loss=1.3610 acc=0.6533
epoch 7, train 4/100, loss=1.4515 acc=0.4800
epoch 7, train 5/100, loss=1.7026 acc=0.4267
epoch 7, train 6/100, loss=1.9315 acc=0.5067
epoch 7, train 7/100, loss=1.0549 acc=0.6800
epoch 7, train 8/100, loss=1.9123 acc=0.6000
epoch 7, train 9/100, loss=1.0380 acc=0.6933
epoch 7, train 10/100, loss=0.6044 acc=0.7733
epoch 7, train 11/100, loss=0.6489 acc=0.8000
epoch 7, train 12/100, loss=0.5365 acc=0.8533
epoch 7, train 13/100, loss=1.2289 acc=0.6133
epoch 7, train 14/100, loss=0.4790 acc=0.8667
epoch 7, train 15/100, loss=1.0789 acc=0.6800
epoch 7, train 16/100, loss=0.7738 acc=0.7733
epoch 7, train 17/100, loss=1.0495 acc=0.6800
epoch 7, train 18/100, loss=0.4132 acc=0.8667
epoch 7, train 19/100, loss=0.7149 acc=0.7467
epoch 7, train 20/100, loss=2.1129 acc=0.4000
epoch 7, train 21/100, loss=0.6521 acc=0.7733
epoch 7, train 22/100, loss=0.9886 acc=0.6533
epoch 7, train 23/100, loss=1.7244 acc=0.4533
epoch 7, train 24/100, loss=0.9850 acc=0.6933
epoch 7, train 25/100, loss=0.5711 acc=0.7733
epoch 7, train 26/100, loss=0.5784 acc=0.8267
epoch 7, train 27/100, loss=0.4894 acc=0.8800
epoch 7, train 28/100, loss=0.4176 acc=0.8533
epoch 7, train 29/100, loss=0.4038 acc=0.9067
epoch 7, train 30/100, loss=0.9682 acc=0.7333
epoch 7, train 31/100, loss=0.9292 acc=0.6800
epoch 7, train 32/100, loss=1.6202 acc=0.5733
epoch 7, train 33/100, loss=1.4477 acc=0.6267
epoch 7, train 34/100, loss=1.0929 acc=0.6267
epoch 7, train 35/100, loss=0.8057 acc=0.7067
epoch 7, train 36/100, loss=1.2373 acc=0.7200
epoch 7, train 37/100, loss=0.7527 acc=0.7333
epoch 7, train 38/100, loss=1.0768 acc=0.6133
epoch 7, train 39/100, loss=0.8773 acc=0.7733
epoch 7, train 40/100, loss=0.8212 acc=0.7200
epoch 7, train 41/100, loss=0.7788 acc=0.7600
epoch 7, train 42/100, loss=1.8694 acc=0.4267
epoch 7, train 43/100, loss=0.7016 acc=0.8000
epoch 7, train 44/100, loss=0.5465 acc=0.8267
epoch 7, train 45/100, loss=0.2440 acc=0.9200
epoch 7, train 46/100, loss=1.1199 acc=0.6400
epoch 7, train 47/100, loss=1.3052 acc=0.6800
epoch 7, train 48/100, loss=1.0307 acc=0.6533
epoch 7, train 49/100, loss=0.9592 acc=0.6400
epoch 7, train 50/100, loss=0.1629 acc=0.9467
epoch 7, train 51/100, loss=1.0408 acc=0.7333
epoch 7, train 52/100, loss=1.0230 acc=0.6400
epoch 7, train 53/100, loss=0.2544 acc=0.9200
epoch 7, train 54/100, loss=1.4439 acc=0.6533
epoch 7, train 55/100, loss=0.6462 acc=0.8000
epoch 7, train 56/100, loss=0.8275 acc=0.6800
epoch 7, train 57/100, loss=0.4578 acc=0.8800
epoch 7, train 58/100, loss=0.7115 acc=0.8000
epoch 7, train 59/100, loss=2.6830 acc=0.3467
epoch 7, train 60/100, loss=0.8891 acc=0.6267
epoch 7, train 61/100, loss=0.6840 acc=0.7200
epoch 7, train 62/100, loss=0.5651 acc=0.7733
epoch 7, train 63/100, loss=0.9782 acc=0.7067
epoch 7, train 64/100, loss=0.3036 acc=0.8933
epoch 7, train 65/100, loss=0.2990 acc=0.9333
epoch 7, train 66/100, loss=0.8037 acc=0.7467
epoch 7, train 67/100, loss=0.3031 acc=0.8933
epoch 7, train 68/100, loss=1.4293 acc=0.6133
epoch 7, train 69/100, loss=1.0403 acc=0.7867
epoch 7, train 70/100, loss=1.1611 acc=0.7067
epoch 7, train 71/100, loss=0.7177 acc=0.7600
epoch 7, train 72/100, loss=0.9132 acc=0.7200
epoch 7, train 73/100, loss=0.7950 acc=0.8000
epoch 7, train 74/100, loss=0.4399 acc=0.8933
epoch 7, train 75/100, loss=1.0416 acc=0.7333
epoch 7, train 76/100, loss=1.1446 acc=0.6400
epoch 7, train 77/100, loss=0.1768 acc=0.9200
epoch 7, train 78/100, loss=0.6726 acc=0.7467
epoch 7, train 79/100, loss=0.6478 acc=0.7333
epoch 7, train 80/100, loss=0.6436 acc=0.8000
epoch 7, train 81/100, loss=1.2942 acc=0.5600
epoch 7, train 82/100, loss=1.2456 acc=0.6267
epoch 7, train 83/100, loss=0.9212 acc=0.7200
epoch 7, train 84/100, loss=0.7213 acc=0.8000
epoch 7, train 85/100, loss=0.8491 acc=0.6667
epoch 7, train 86/100, loss=0.7627 acc=0.7733
epoch 7, train 87/100, loss=0.7806 acc=0.7467
epoch 7, train 88/100, loss=0.7587 acc=0.7467
epoch 7, train 89/100, loss=0.9962 acc=0.7067
epoch 7, train 90/100, loss=0.6683 acc=0.7467
epoch 7, train 91/100, loss=0.4256 acc=0.8533
epoch 7, train 92/100, loss=1.0954 acc=0.5867
epoch 7, train 93/100, loss=0.6407 acc=0.7867
epoch 7, train 94/100, loss=0.9982 acc=0.6267
epoch 7, train 95/100, loss=0.1970 acc=0.9200
epoch 7, train 96/100, loss=0.9458 acc=0.7333
epoch 7, train 97/100, loss=0.8168 acc=0.7467
epoch 7, train 98/100, loss=0.8365 acc=0.7600
epoch 7, train 99/100, loss=0.6467 acc=0.7600
epoch 7, train 100/100, loss=1.2780 acc=0.6800
best epoch 5, best val acc=0.6584
epoch 7, val, loss=1.2725 acc=0.6380
ETA:27m/6.5h
epoch 8, train 1/100, loss=1.2378 acc=0.6667
epoch 8, train 2/100, loss=0.6020 acc=0.8000
epoch 8, train 3/100, loss=0.6121 acc=0.7867
epoch 8, train 4/100, loss=0.6527 acc=0.7867
epoch 8, train 5/100, loss=0.5986 acc=0.8000
epoch 8, train 6/100, loss=1.1827 acc=0.6667
epoch 8, train 7/100, loss=0.6009 acc=0.8267
epoch 8, train 8/100, loss=0.9287 acc=0.6667
epoch 8, train 9/100, loss=0.5247 acc=0.8267
epoch 8, train 10/100, loss=0.8833 acc=0.8000
epoch 8, train 11/100, loss=0.4106 acc=0.8400
epoch 8, train 12/100, loss=0.5519 acc=0.8267
epoch 8, train 13/100, loss=0.5554 acc=0.8133
epoch 8, train 14/100, loss=0.9185 acc=0.6800
epoch 8, train 15/100, loss=0.2633 acc=0.9067
epoch 8, train 16/100, loss=0.7902 acc=0.7600
epoch 8, train 17/100, loss=1.4298 acc=0.5733
epoch 8, train 18/100, loss=0.3711 acc=0.8533
epoch 8, train 19/100, loss=0.6591 acc=0.7867
epoch 8, train 20/100, loss=1.4536 acc=0.6400
epoch 8, train 21/100, loss=0.3657 acc=0.8400
epoch 8, train 22/100, loss=0.1150 acc=0.9467
epoch 8, train 23/100, loss=0.4939 acc=0.8133
epoch 8, train 24/100, loss=1.7293 acc=0.5067
epoch 8, train 25/100, loss=0.3331 acc=0.8667
epoch 8, train 26/100, loss=1.3645 acc=0.6133
epoch 8, train 27/100, loss=0.4250 acc=0.8400
epoch 8, train 28/100, loss=0.6443 acc=0.8267
epoch 8, train 29/100, loss=0.2214 acc=0.9200
epoch 8, train 30/100, loss=0.7654 acc=0.7333
epoch 8, train 31/100, loss=1.0205 acc=0.7200
epoch 8, train 32/100, loss=0.4986 acc=0.8267
epoch 8, train 33/100, loss=1.5555 acc=0.6267
epoch 8, train 34/100, loss=0.5147 acc=0.8133
epoch 8, train 35/100, loss=0.6600 acc=0.8400
epoch 8, train 36/100, loss=0.8669 acc=0.6800
epoch 8, train 37/100, loss=1.3488 acc=0.6000
epoch 8, train 38/100, loss=0.9826 acc=0.7200
epoch 8, train 39/100, loss=0.7637 acc=0.8133
epoch 8, train 40/100, loss=0.3946 acc=0.8933
epoch 8, train 41/100, loss=0.7666 acc=0.6933
epoch 8, train 42/100, loss=1.0316 acc=0.7733
epoch 8, train 43/100, loss=1.3971 acc=0.7067
epoch 8, train 44/100, loss=0.9571 acc=0.6667
epoch 8, train 45/100, loss=0.5189 acc=0.8267
epoch 8, train 46/100, loss=0.4887 acc=0.8133
epoch 8, train 47/100, loss=0.2814 acc=0.9067
epoch 8, train 48/100, loss=1.2486 acc=0.6800
epoch 8, train 49/100, loss=1.2924 acc=0.5867
epoch 8, train 50/100, loss=0.3465 acc=0.9200
epoch 8, train 51/100, loss=0.3203 acc=0.8800
epoch 8, train 52/100, loss=1.7901 acc=0.5867
epoch 8, train 53/100, loss=0.4882 acc=0.8267
epoch 8, train 54/100, loss=1.3337 acc=0.6933
epoch 8, train 55/100, loss=0.7012 acc=0.8000
epoch 8, train 56/100, loss=0.4896 acc=0.8533
epoch 8, train 57/100, loss=1.3907 acc=0.6667
epoch 8, train 58/100, loss=0.2676 acc=0.8800
epoch 8, train 59/100, loss=1.2866 acc=0.5867
epoch 8, train 60/100, loss=0.4060 acc=0.8133
epoch 8, train 61/100, loss=1.2817 acc=0.6933
epoch 8, train 62/100, loss=1.9482 acc=0.5333
epoch 8, train 63/100, loss=0.4587 acc=0.8533
epoch 8, train 64/100, loss=0.8675 acc=0.7333
epoch 8, train 65/100, loss=1.4053 acc=0.6267
epoch 8, train 66/100, loss=0.5979 acc=0.7333
epoch 8, train 67/100, loss=0.3249 acc=0.8533
epoch 8, train 68/100, loss=1.4491 acc=0.5733
epoch 8, train 69/100, loss=0.4788 acc=0.8667
epoch 8, train 70/100, loss=1.2040 acc=0.6533
epoch 8, train 71/100, loss=1.0689 acc=0.6800
epoch 8, train 72/100, loss=0.6406 acc=0.7733
epoch 8, train 73/100, loss=0.6454 acc=0.7067
epoch 8, train 74/100, loss=0.4300 acc=0.8667
epoch 8, train 75/100, loss=1.4952 acc=0.4800
epoch 8, train 76/100, loss=0.9279 acc=0.7333
epoch 8, train 77/100, loss=0.7517 acc=0.7467
epoch 8, train 78/100, loss=1.2406 acc=0.7067
epoch 8, train 79/100, loss=0.7157 acc=0.8133
epoch 8, train 80/100, loss=0.6808 acc=0.8400
epoch 8, train 81/100, loss=1.3418 acc=0.5600
epoch 8, train 82/100, loss=0.8269 acc=0.7333
epoch 8, train 83/100, loss=0.8771 acc=0.6933
epoch 8, train 84/100, loss=1.4154 acc=0.6000
epoch 8, train 85/100, loss=0.7004 acc=0.7600
epoch 8, train 86/100, loss=0.3725 acc=0.8533
epoch 8, train 87/100, loss=0.8648 acc=0.7067
epoch 8, train 88/100, loss=1.0910 acc=0.6133
epoch 8, train 89/100, loss=0.7666 acc=0.7467
epoch 8, train 90/100, loss=0.6126 acc=0.8133
epoch 8, train 91/100, loss=1.4118 acc=0.4933
epoch 8, train 92/100, loss=0.8908 acc=0.7200
epoch 8, train 93/100, loss=0.4795 acc=0.8000
epoch 8, train 94/100, loss=0.6786 acc=0.7467
epoch 8, train 95/100, loss=1.0152 acc=0.7067
epoch 8, train 96/100, loss=0.0908 acc=0.9733
epoch 8, train 97/100, loss=0.8434 acc=0.7067
epoch 8, train 98/100, loss=0.7054 acc=0.7467
epoch 8, train 99/100, loss=0.8035 acc=0.7200
epoch 8, train 100/100, loss=0.9033 acc=0.7200
best epoch 5, best val acc=0.6584
epoch 8, val, loss=1.2918 acc=0.6397
ETA:31m/6.5h
epoch 9, train 1/100, loss=0.3853 acc=0.8933
epoch 9, train 2/100, loss=0.4513 acc=0.8533
epoch 9, train 3/100, loss=1.0490 acc=0.7067
epoch 9, train 4/100, loss=1.4715 acc=0.6000
epoch 9, train 5/100, loss=1.1143 acc=0.5733
epoch 9, train 6/100, loss=0.9494 acc=0.7600
epoch 9, train 7/100, loss=0.9696 acc=0.7067
epoch 9, train 8/100, loss=1.1512 acc=0.7200
epoch 9, train 9/100, loss=0.2356 acc=0.8933
epoch 9, train 10/100, loss=0.6624 acc=0.7733
epoch 9, train 11/100, loss=1.2105 acc=0.6267
epoch 9, train 12/100, loss=0.2732 acc=0.9200
epoch 9, train 13/100, loss=0.5210 acc=0.8533
epoch 9, train 14/100, loss=0.2076 acc=0.8933
epoch 9, train 15/100, loss=2.4184 acc=0.4400
epoch 9, train 16/100, loss=0.4769 acc=0.8400
epoch 9, train 17/100, loss=0.3934 acc=0.8133
epoch 9, train 18/100, loss=0.7147 acc=0.7867
epoch 9, train 19/100, loss=0.2861 acc=0.8800
epoch 9, train 20/100, loss=1.0778 acc=0.6800
epoch 9, train 21/100, loss=1.5906 acc=0.6267
epoch 9, train 22/100, loss=0.3300 acc=0.9200
epoch 9, train 23/100, loss=0.8867 acc=0.7200
epoch 9, train 24/100, loss=0.4689 acc=0.8267
epoch 9, train 25/100, loss=0.6117 acc=0.7200
epoch 9, train 26/100, loss=1.1094 acc=0.6933
epoch 9, train 27/100, loss=0.6210 acc=0.8400
epoch 9, train 28/100, loss=1.0411 acc=0.6400
epoch 9, train 29/100, loss=0.6095 acc=0.7733
epoch 9, train 30/100, loss=0.7130 acc=0.7333
epoch 9, train 31/100, loss=0.6354 acc=0.8000
epoch 9, train 32/100, loss=1.0462 acc=0.6800
epoch 9, train 33/100, loss=1.1234 acc=0.5600
epoch 9, train 34/100, loss=0.6760 acc=0.8133
epoch 9, train 35/100, loss=0.6401 acc=0.8000
epoch 9, train 36/100, loss=2.1889 acc=0.4133
epoch 9, train 37/100, loss=0.7593 acc=0.7867
epoch 9, train 38/100, loss=0.7068 acc=0.8000
epoch 9, train 39/100, loss=0.9451 acc=0.6933
epoch 9, train 40/100, loss=0.9414 acc=0.7333
epoch 9, train 41/100, loss=0.5944 acc=0.8267
epoch 9, train 42/100, loss=2.2802 acc=0.5200
epoch 9, train 43/100, loss=0.9045 acc=0.6667
epoch 9, train 44/100, loss=1.4633 acc=0.5467
epoch 9, train 45/100, loss=0.8485 acc=0.7467
epoch 9, train 46/100, loss=0.7642 acc=0.7733
epoch 9, train 47/100, loss=0.8084 acc=0.7067
epoch 9, train 48/100, loss=0.9185 acc=0.7333
epoch 9, train 49/100, loss=0.4767 acc=0.8133
epoch 9, train 50/100, loss=1.5810 acc=0.5333
epoch 9, train 51/100, loss=0.2671 acc=0.8800
epoch 9, train 52/100, loss=1.5451 acc=0.6000
epoch 9, train 53/100, loss=0.9195 acc=0.7467
epoch 9, train 54/100, loss=0.7205 acc=0.8400
epoch 9, train 55/100, loss=0.5338 acc=0.8267
epoch 9, train 56/100, loss=0.7453 acc=0.7733
epoch 9, train 57/100, loss=0.5992 acc=0.7867
epoch 9, train 58/100, loss=1.3098 acc=0.6133
epoch 9, train 59/100, loss=0.3087 acc=0.9067
epoch 9, train 60/100, loss=0.7236 acc=0.7067
epoch 9, train 61/100, loss=1.2238 acc=0.6000
epoch 9, train 62/100, loss=0.5730 acc=0.7867
epoch 9, train 63/100, loss=0.8075 acc=0.7333
epoch 9, train 64/100, loss=1.5254 acc=0.6267
epoch 9, train 65/100, loss=0.3988 acc=0.8133
epoch 9, train 66/100, loss=0.4059 acc=0.9067
epoch 9, train 67/100, loss=0.4219 acc=0.8533
epoch 9, train 68/100, loss=0.6052 acc=0.8133
epoch 9, train 69/100, loss=0.5264 acc=0.8933
epoch 9, train 70/100, loss=0.2373 acc=0.8933
epoch 9, train 71/100, loss=0.6838 acc=0.7867
epoch 9, train 72/100, loss=0.8905 acc=0.7067
epoch 9, train 73/100, loss=0.5137 acc=0.8533
epoch 9, train 74/100, loss=0.7231 acc=0.7333
epoch 9, train 75/100, loss=1.2046 acc=0.7067
epoch 9, train 76/100, loss=0.6070 acc=0.7467
epoch 9, train 77/100, loss=0.7064 acc=0.7200
epoch 9, train 78/100, loss=0.6583 acc=0.7733
epoch 9, train 79/100, loss=0.6386 acc=0.8133
epoch 9, train 80/100, loss=0.3316 acc=0.8933
epoch 9, train 81/100, loss=0.2779 acc=0.9333
epoch 9, train 82/100, loss=0.3874 acc=0.8400
epoch 9, train 83/100, loss=0.8173 acc=0.7333
epoch 9, train 84/100, loss=0.0900 acc=0.9600
epoch 9, train 85/100, loss=0.6052 acc=0.8000
epoch 9, train 86/100, loss=0.4691 acc=0.8267
epoch 9, train 87/100, loss=0.4590 acc=0.8667
epoch 9, train 88/100, loss=0.2820 acc=0.9200
epoch 9, train 89/100, loss=0.6461 acc=0.7333
epoch 9, train 90/100, loss=0.5072 acc=0.8533
epoch 9, train 91/100, loss=0.5221 acc=0.8000
epoch 9, train 92/100, loss=1.0680 acc=0.6533
epoch 9, train 93/100, loss=1.0203 acc=0.5200
epoch 9, train 94/100, loss=0.4948 acc=0.8400
epoch 9, train 95/100, loss=0.8782 acc=0.7600
epoch 9, train 96/100, loss=0.5795 acc=0.7733
epoch 9, train 97/100, loss=0.7918 acc=0.6933
epoch 9, train 98/100, loss=1.1644 acc=0.6000
epoch 9, train 99/100, loss=0.7332 acc=0.7333
epoch 9, train 100/100, loss=0.5690 acc=0.8133
best epoch 5, best val acc=0.6584
epoch 9, val, loss=1.1031 acc=0.6794
ETA:35m/6.5h
epoch 10, train 1/100, loss=0.5944 acc=0.8267
epoch 10, train 2/100, loss=0.8793 acc=0.7600
epoch 10, train 3/100, loss=0.2606 acc=0.9200
epoch 10, train 4/100, loss=0.6234 acc=0.8000
epoch 10, train 5/100, loss=1.1146 acc=0.7067
epoch 10, train 6/100, loss=0.5753 acc=0.8000
epoch 10, train 7/100, loss=0.7267 acc=0.7600
epoch 10, train 8/100, loss=0.9640 acc=0.6667
epoch 10, train 9/100, loss=1.3442 acc=0.6133
epoch 10, train 10/100, loss=0.5540 acc=0.8000
epoch 10, train 11/100, loss=1.3410 acc=0.5600
epoch 10, train 12/100, loss=0.9474 acc=0.6933
epoch 10, train 13/100, loss=0.4416 acc=0.8800
epoch 10, train 14/100, loss=0.6295 acc=0.8267
epoch 10, train 15/100, loss=0.6898 acc=0.7600
epoch 10, train 16/100, loss=1.6013 acc=0.5467
epoch 10, train 17/100, loss=0.9382 acc=0.6400
epoch 10, train 18/100, loss=0.7546 acc=0.7467
epoch 10, train 19/100, loss=0.5979 acc=0.8133
epoch 10, train 20/100, loss=0.6551 acc=0.8000
epoch 10, train 21/100, loss=1.0969 acc=0.6533
epoch 10, train 22/100, loss=1.2748 acc=0.6000
epoch 10, train 23/100, loss=0.5545 acc=0.7867
epoch 10, train 24/100, loss=0.6522 acc=0.7600
epoch 10, train 25/100, loss=1.6140 acc=0.5333
epoch 10, train 26/100, loss=0.6922 acc=0.7867
epoch 10, train 27/100, loss=0.9111 acc=0.7867
epoch 10, train 28/100, loss=0.8804 acc=0.7600
epoch 10, train 29/100, loss=0.8556 acc=0.7600
epoch 10, train 30/100, loss=1.7400 acc=0.6133
epoch 10, train 31/100, loss=0.8327 acc=0.7467
epoch 10, train 32/100, loss=0.7267 acc=0.7867
epoch 10, train 33/100, loss=0.2473 acc=0.9067
epoch 10, train 34/100, loss=0.8663 acc=0.7600
epoch 10, train 35/100, loss=0.7368 acc=0.7733
epoch 10, train 36/100, loss=0.3751 acc=0.8800
epoch 10, train 37/100, loss=0.5410 acc=0.8400
epoch 10, train 38/100, loss=1.3361 acc=0.6533
epoch 10, train 39/100, loss=0.5859 acc=0.8533
epoch 10, train 40/100, loss=0.6790 acc=0.8400
epoch 10, train 41/100, loss=0.8030 acc=0.8267
epoch 10, train 42/100, loss=0.3159 acc=0.9200
epoch 10, train 43/100, loss=0.5071 acc=0.8800
epoch 10, train 44/100, loss=0.8862 acc=0.7600
epoch 10, train 45/100, loss=0.8613 acc=0.7200
epoch 10, train 46/100, loss=0.5038 acc=0.8800
epoch 10, train 47/100, loss=1.6577 acc=0.4400
epoch 10, train 48/100, loss=1.8192 acc=0.5200
epoch 10, train 49/100, loss=0.5296 acc=0.8267
epoch 10, train 50/100, loss=0.8660 acc=0.6667
epoch 10, train 51/100, loss=1.1321 acc=0.6667
epoch 10, train 52/100, loss=0.1561 acc=0.9467
epoch 10, train 53/100, loss=0.8750 acc=0.7333
epoch 10, train 54/100, loss=0.6753 acc=0.7600
epoch 10, train 55/100, loss=0.5531 acc=0.8133
epoch 10, train 56/100, loss=0.3265 acc=0.8533