-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathtrain_protonet.py
244 lines (202 loc) · 9.55 KB
/
train_protonet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import argparse
import os.path as osp
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from feat.dataloader.samplers import CategoriesSampler
from feat.models.protonet import ProtoNet
from feat.utils import pprint, set_gpu, ensure_path, Averager, Timer, count_acc, compute_confidence_interval
from tensorboardX import SummaryWriter
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--max_epoch', type=int, default=200)
parser.add_argument('--shot', type=int, default=1)
parser.add_argument('--query', type=int, default=15)
parser.add_argument('--way', type=int, default=5)
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--step_size', type=int, default=10)
parser.add_argument('--gamma', type=float, default=0.2)
parser.add_argument('--temperature', type=float, default=1)
parser.add_argument('--model_type', type=str, default='ConvNet', choices=['ConvNet', 'ResNet', 'AmdimNet'])
parser.add_argument('--dataset', type=str, default='MiniImageNet', choices=['MiniImageNet', 'CUB', 'TieredImageNet'])
# MiniImageNet, ConvNet, './saves/initialization/miniimagenet/con-pre.pth'
# MiniImageNet, ResNet, './saves/initialization/miniimagenet/res-pre.pth'
# CUB, ConvNet, './saves/initialization/cub/con-pre.pth'
parser.add_argument('--init_weights', type=str, default=None)
parser.add_argument('--save_path', type=str, default=None)
parser.add_argument('--gpu', default='0')
# AMDIM Modelrd
parser.add_argument('--ndf', type=int, default=256)
parser.add_argument('--rkhs', type=int, default=2048)
parser.add_argument('--nd', type=int, default=10)
args = parser.parse_args()
pprint(vars(args))
set_gpu(args.gpu)
save_path1 = '-'.join([args.dataset, args.model_type, 'ProtoNet'])
save_path2 = '_'.join([str(args.shot), str(args.query), str(args.way),
str(args.step_size), str(args.gamma), str(args.lr), str(args.temperature)])
args.save_path = osp.join(args.save_path, osp.join(save_path1, save_path2))
ensure_path(save_path1, remove=False)
ensure_path(args.save_path)
if args.dataset == 'MiniImageNet':
# Handle MiniImageNet
from feat.dataloader.mini_imagenet import MiniImageNet as Dataset
elif args.dataset == 'CUB':
from feat.dataloader.cub import CUB as Dataset
elif args.dataset == 'TieredImageNet':
from feat.dataloader.tiered_imagenet import tieredImageNet as Dataset
else:
raise ValueError('Non-supported Dataset.')
trainset = Dataset('train', args)
train_sampler = CategoriesSampler(trainset.label, 100, args.way, args.shot + args.query)
train_loader = DataLoader(dataset=trainset, batch_sampler=train_sampler, num_workers=8, pin_memory=True)
valset = Dataset('val', args)
val_sampler = CategoriesSampler(valset.label, 500, args.way, args.shot + args.query)
val_loader = DataLoader(dataset=valset, batch_sampler=val_sampler, num_workers=8, pin_memory=True)
model = ProtoNet(args)
if args.model_type == 'ConvNet':
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
elif args.model_type == 'ResNet':
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, nesterov=True, weight_decay=0.0005)
elif args.model_type == 'AmdimNet':
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, nesterov=True, weight_decay=0.0005)
else:
raise ValueError('No Such Encoder')
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
# load pre-trained model (no FC weights)
model_dict = model.state_dict()
if args.init_weights is not None:
model_detail = torch.load(args.init_weights)
if 'params' in model_detail:
pretrained_dict = model_detail['params']
# remove weights for FC
pretrained_dict = {'encoder.'+k: v for k, v in pretrained_dict.items()}
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
print(pretrained_dict.keys())
model_dict.update(pretrained_dict)
else:
pretrained_dict = model_detail['model']
#print(model_dict.keys())
#print(pretrained_dict.keys())
pretrained_dict = {k.replace('module.', ''): v for k, v in pretrained_dict.items() if k.replace('module.', '') in model_dict}
#print(pretrained_dict.keys())
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
model = model.cuda()
def save_model(name):
torch.save(dict(params=model.state_dict()), osp.join(args.save_path, name + '.pth'))
trlog = {}
trlog['args'] = vars(args)
trlog['train_loss'] = []
trlog['val_loss'] = []
trlog['train_acc'] = []
trlog['val_acc'] = []
trlog['max_acc'] = 0.0
trlog['max_acc_epoch'] = 0
timer = Timer()
global_count = 0
writer = SummaryWriter(logdir=args.save_path)
for epoch in range(1, args.max_epoch + 1):
lr_scheduler.step()
model.train()
tl = Averager()
ta = Averager()
label = torch.arange(args.way).repeat(args.query)
if torch.cuda.is_available():
label = label.type(torch.cuda.LongTensor)
else:
label = label.type(torch.LongTensor)
for i, batch in enumerate(train_loader, 1):
global_count = global_count + 1
if torch.cuda.is_available():
data, _ = [_.cuda() for _ in batch]
else:
data = batch[0]
p = args.shot * args.way
data_shot, data_query = data[:p], data[p:]
logits = model(data_shot, data_query)
loss = F.cross_entropy(logits, label)
acc = count_acc(logits, label)
writer.add_scalar('data/loss', float(loss), global_count)
writer.add_scalar('data/acc', float(acc), global_count)
print('epoch {}, train {}/{}, loss={:.4f} acc={:.4f}'
.format(epoch, i, len(train_loader), loss.item(), acc))
tl.add(loss.item())
ta.add(acc)
optimizer.zero_grad()
loss.backward()
optimizer.step()
tl = tl.item()
ta = ta.item()
model.eval()
vl = Averager()
va = Averager()
label = torch.arange(args.way).repeat(args.query)
if torch.cuda.is_available():
label = label.type(torch.cuda.LongTensor)
else:
label = label.type(torch.LongTensor)
print('best epoch {}, best val acc={:.4f}'.format(trlog['max_acc_epoch'], trlog['max_acc']))
with torch.no_grad():
for i, batch in enumerate(val_loader, 1):
if torch.cuda.is_available():
data, _ = [_.cuda() for _ in batch]
else:
data = batch[0]
p = args.shot * args.way
data_shot, data_query = data[:p], data[p:]
logits = model(data_shot, data_query)
loss = F.cross_entropy(logits, label)
acc = count_acc(logits, label)
vl.add(loss.item())
va.add(acc)
vl = vl.item()
va = va.item()
writer.add_scalar('data/val_loss', float(vl), epoch)
writer.add_scalar('data/val_acc', float(va), epoch)
print('epoch {}, val, loss={:.4f} acc={:.4f}'.format(epoch, vl, va))
if va > trlog['max_acc']:
trlog['max_acc'] = va
trlog['max_acc_epoch'] = epoch
save_model('max_acc')
trlog['train_loss'].append(tl)
trlog['train_acc'].append(ta)
trlog['val_loss'].append(vl)
trlog['val_acc'].append(va)
torch.save(trlog, osp.join(args.save_path, 'trlog'))
save_model('epoch-last')
print('ETA:{}/{}'.format(timer.measure(), timer.measure(epoch / args.max_epoch)))
writer.close()
# Test Phase
trlog = torch.load(osp.join(args.save_path, 'trlog'))
test_set = Dataset('test', args)
sampler = CategoriesSampler(test_set.label, 10000, args.way, args.shot + args.query)
loader = DataLoader(test_set, batch_sampler=sampler, num_workers=8, pin_memory=True)
test_acc_record = np.zeros((10000,))
model.load_state_dict(torch.load(osp.join(args.save_path, 'max_acc' + '.pth'))['params'])
model.eval()
ave_acc = Averager()
label = torch.arange(args.way).repeat(args.query)
if torch.cuda.is_available():
label = label.type(torch.cuda.LongTensor)
else:
label = label.type(torch.LongTensor)
with torch.no_grad():
for i, batch in enumerate(loader, 1):
if torch.cuda.is_available():
data, _ = [_.cuda() for _ in batch]
else:
data = batch[0]
k = args.way * args.shot
data_shot, data_query = data[:k], data[k:]
logits = model(data_shot, data_query)
acc = count_acc(logits, label)
ave_acc.add(acc)
test_acc_record[i-1] = acc
print('batch {}: {:.2f}({:.2f})'.format(i, ave_acc.item() * 100, acc * 100))
m, pm = compute_confidence_interval(test_acc_record)
print('Val Best Acc {:.4f}, Test Acc {:.4f}'.format(trlog['max_acc'], ave_acc.item()))
print('Test Acc {:.4f} + {:.4f}'.format(m, pm))