forked from alibaba/easyrobust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
61 lines (50 loc) · 2.27 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from scipy.misc import imread, imresize, imsave
class CustomDataSet(Dataset):
def __init__(self, input_dir, input_height, input_width):
self.input_dir = input_dir
self.input_size = [input_height, input_width]
self.image_list = os.listdir(input_dir)
def __getitem__(self, item):
img_path = self.image_list[item]
with open(os.path.join(self.input_dir, img_path), 'rb') as f:
image = imresize(imread(f, mode='RGB'), self.input_size).transpose((2, 0, 1)).astype(np.float32) / 255.0
return image, item
def __len__(self):
return len(self.image_list)
def load_images(input_dir, batch_size, input_height=224, input_width=224):
"""Read png images from input directory in batches.
Args:
input_dir: input directory
batch_size: size of minibatch
input_height: the array size of input
input_width: the array size of input
Return:
dataloader
"""
img_set = CustomDataSet(input_dir=input_dir, input_height=input_height, input_width=input_width)
img_loader = DataLoader(img_set, batch_size=batch_size, num_workers=2)
return img_loader, img_set.image_list
def save_images(images, img_list, idx, output_dir):
"""Saves images to the output directory.
Args:
images: tensor with minibatch of images
img_list: list of filenames without path
If number of file names in this list less than number of images in
the minibatch then only first len(filenames) images will be saved.
output_dir: directory where to save images
"""
for i, sample_idx in enumerate(idx.numpy()):
# Images for inception classifier are normalized to be in [-1, 1] interval,
# so rescale them back to [0, 1].
filename = img_list[sample_idx]
cur_images = (images[i, :, :, :] * 255).astype(np.uint8)
with open(os.path.join(output_dir, filename), 'wb') as f:
imsave(f, cur_images.transpose(1, 2, 0), format='png')
if __name__ == '__main__':
cdataset = CustomDataSet('nat_images', input_height=299, input_width=299)
img, _ = cdataset.__getitem__(0)
print(img.shape)