-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model_DFT.py
383 lines (321 loc) · 16.1 KB
/
train_model_DFT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import copy
import logging
import os
import pickle
import datetime
import numpy as np
import pandas as pd
import argparse
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data import Sampler
from torch.utils.tensorboard import SummaryWriter
from DFT import DFT
from my_lr_scheduler import ChainedScheduler
import random
os.environ['CUDA_VISIBLE_DEVICES'] = "0" # 程序可见的GPU
cpu_num = 1
os.environ['OMP_NUM_THREADS'] = str(cpu_num)
os.environ['OPENBLAS_NUM_THREADS'] = str(cpu_num)
os.environ['MKL_NUM_THREADS'] = str(cpu_num)
os.environ['VECLIB_MAXIMUM_THREADS'] = str(cpu_num)
os.environ['NUMEXPR_NUM_THREADS'] = str(cpu_num)
torch.set_num_threads(cpu_num)
torch.set_float32_matmul_precision('high')
def set_random_seed(seed):
# 设置Python随机种子
random.seed(seed)
# 设置NumPy随机种子
np.random.seed(seed)
# 设置PyTorch随机种子
torch.manual_seed(seed)
# 如果使用GPU,设置CUDA随机种子
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False # 关闭cuDNN的自动优化,保证每次运行结果一致
class TRAINFIG:
def __init__(self, model_name="DFT", GPU=0, universe='csi800', seed=11032,
dataset_country="CN_DATA",dataset="_2020_2023_step_5_c1c3",
n_epoch=75, lr=3e-4, gamma=1.0, coef=1.0,
cosine_period=4, T_0=15, T_mult=1, warmUp_epoch=10, eta_min=2e-5,
weight_decay=0.001, seq_len=8, d_feat=158, d_model=256, n_head=4, dropout=0.5,
gate_input_start_index=158, gate_input_end_index=221, beta=10,
train_stop_loss_threshold=0.95):
self.model_name = model_name+f"{seed}_{universe}{dataset}"
self.GPU = GPU
self.universe = universe
self.seed = seed
self.dataset_dir_path = f"./DATASETS/{dataset_country}/{universe}"
self.model_save_path = f"./model_params/{self.universe}/{self.model_name}"
self.metrics_loss_path = f"./metrics/{self.universe}/{self.model_name}"
self.log_dir = f"./logs/{self.model_name}"
# 确保目录存在
for path in [self.log_dir, self.model_save_path, self.metrics_loss_path]:
os.makedirs(path, exist_ok=True)
logging.basicConfig(filename=os.path.join(self.log_dir, f"{self.model_name}.log"),
level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
self.logger = logging.getLogger(f"Train {self.model_name}")
self.writer = SummaryWriter(log_dir=self.log_dir, filename_suffix=f"{self.model_name}")
# 其他配置参数
self.n_epoch = n_epoch
self.lr = lr
self.gamma = gamma
self.coef = coef
self.cosine_period = cosine_period
self.T_0 = T_0
self.T_mult = T_mult
self.warmUp_epoch = warmUp_epoch
self.eta_min = eta_min
self.weight_decay = weight_decay
parts = dataset.split('_')
filtered_parts = list(filter(None, parts))
self.seq_len = 8
self.d_feat = d_feat
self.d_model = d_model
self.n_head = n_head
self.dropout = dropout
self.gate_input_start_index = gate_input_start_index
self.gate_input_end_index = gate_input_end_index
self.beta = beta
self.train_stop_loss_threshold = train_stop_loss_threshold
# 这些初始化应该在模型训练开始的地方进行
self.device = torch.device(f"cuda:{self.GPU}" if torch.cuda.is_available() else "cpu")
self.model = DFT(d_model=self.d_model, d_feat=self.d_feat, seq_len=self.seq_len,
t_nhead=self.n_head, S_dropout_rate=self.dropout, beta=self.beta).to(self.device)
self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.lr, betas=(0.9, 0.999),
weight_decay=self.weight_decay)
self.lr_scheduler = ChainedScheduler(self.train_optimizer, T_0=self.T_0, T_mul=self.T_mult,
eta_min=self.eta_min, last_epoch=-1, max_lr=self.lr,
warmup_steps=self.warmUp_epoch, gamma=self.gamma,
coef=self.coef, step_size=3, cosine_period=self.cosine_period)
# 日志记录也应根据实际操作动态添加,而非在此处静态定义
self.writer.add_text("train_optimizer", self.train_optimizer.__str__())
self.writer.add_text("lr_scheduler", self.lr_scheduler.__str__())
self.logger.info(msg=f"\n===== Model {model_name} =====\n"
f"n_epochs: {n_epoch}\n"
f"start_lr: {lr}\n"
f"T_0: {T_0}\n"
f"T_mult: {T_mult}\n"
f"gamma: {gamma}\n"
f"coef: {coef}\n"
f"cosine_period: {cosine_period}\n"
f"eta_min: {eta_min}\n"
f"seed: {seed}\n"
f"optimizer: {self.train_optimizer}\n"
f"lr_scheduler: {self.lr_scheduler}\n"
f"description: train {model_name}\n\n")
self.writer.add_text("model_name", model_name)
self.writer.add_text("seed", str(seed))
self.writer.add_text("n_head", str(n_head))
self.writer.add_text("learning rate", str(lr))
self.writer.add_text("T_0", str(T_0))
self.writer.add_text("T_mult", str(T_mult))
self.writer.add_text("gamma", str(gamma))
self.writer.add_text("coef", str(coef))
self.writer.add_text("eta_min", str(eta_min))
self.writer.add_text("weight_decay", str(weight_decay))
self.writer.add_text("cosine_period", str(cosine_period))
def calc_ic(pred, label):
df = pd.DataFrame({'pred': pred, 'label': label})
ic = df['pred'].corr(df['label'])
ric = df['pred'].corr(df['label'], method='spearman')
return ic, ric
class DailyBatchSamplerRandom(Sampler):
def __init__(self, data_source, shuffle=False):
super().__init__(data_source)
self.data_source = data_source
self.shuffle = shuffle
# calculate number of samples in each batch
self.daily_count = pd.Series(index=self.data_source.get_index(), dtype=np.float64).groupby(
"datetime").size().values
# calculate begin index of each batch
self.daily_index = np.roll(np.cumsum(self.daily_count), 1)
self.daily_index[0] = 0
def __iter__(self):
if self.shuffle:
index = np.arange(len(self.daily_count))
np.random.shuffle(index)
for i in index:
yield np.arange(self.daily_index[i], self.daily_index[i] + self.daily_count[i])
else:
for idx, count in zip(self.daily_index, self.daily_count):
yield np.arange(idx, idx + count)
def __len__(self):
return len(self.data_source)
def loss_fn(pred, label):
mask = ~torch.isnan(label)
loss = (pred[mask] - label[mask]) ** 2
return torch.mean(loss)
def _init_data_loader(data, shuffle=True, drop_last=True):
sampler = DailyBatchSamplerRandom(data, shuffle)
data_loader = DataLoader(
data, sampler=sampler, drop_last=drop_last, num_workers=4, pin_memory=True)
return data_loader
def train_epoch(data_loader, train_optimizer, lr_scheduler, model, device):
model.train()
losses = []
for data in data_loader:
data = torch.squeeze(data, dim=0)
'''
data.shape: (N, T, F)
N - number of stocks
T - length of lookback_window, 8
F - 158 factors + 63 market information + 1 label
'''
feature = data[:, :, 0:-1].to(device)
label = data[:, -1, -1].to(device)
# print("feature",feature.shape)
# print("label",label.shape)
# a=1/0
pred = model(feature.float())
loss = loss_fn(pred, label)
losses.append(loss.item())
train_optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_value_(model.parameters(), 3.0)
train_optimizer.step()
lr_scheduler.step()
return float(np.mean(losses))
def valid_epoch(data_loader, model, device):
model.eval()
losses = []
ic = []
ric = []
with torch.no_grad():
for data in data_loader:
data = torch.squeeze(data, dim=0)
feature = data[:, :, 0:-1].to(device)
label = data[:, -1, -1].to(device)
with torch.no_grad():
pred = model(feature.float())
loss = loss_fn(pred, label)
losses.append(loss.item())
daily_ic, daily_ric = calc_ic(
pred.detach().cpu().numpy(), label.detach().cpu().numpy())
ic.append(daily_ic)
ric.append(daily_ric)
metrics = {
'IC': np.mean(ic),
'ICIR': np.mean(ic) / np.std(ic),
'RIC': np.mean(ric),
'RICIR': np.mean(ic) / np.std(ric)
}
return float(np.mean(losses)), metrics
def train(model_name,dataset,universe,country,seed):
TYPENAME = dataset
# 实例化配置类
TrainConfig = TRAINFIG(model_name=model_name,universe=universe, seed=seed,dataset_country=country,dataset=dataset) # 自定义model_name
# 获取当前时间
current_time = datetime.datetime.now()
# 生成文件名,格式为 模型名字_年月日时分秒.txt
file_name = f"./txt/{TrainConfig.model_name}_{current_time.strftime('%Y%m%d%H%M%S')}.txt"
with open(file_name, "w") as ftxt:
ftxt.write("model_name=" + TrainConfig.model_name + " universe=" + TrainConfig.universe + " seed=" + str(
TrainConfig.seed) + "\n")
if not os.path.exists(TrainConfig.dataset_dir_path):
print(TrainConfig.dataset_dir_path)
raise FileExistsError("Data dir not exists")
universe = TrainConfig.universe # or 'csi800'
# Please install qlib first before load the data.
data_name = ".pkl"
with open(f'{TrainConfig.dataset_dir_path}//{universe}_dl_train{TYPENAME}' + data_name, 'rb') as f:
dl_train = pickle.load(f)
with open(f'{TrainConfig.dataset_dir_path}//{universe}_dl_valid{TYPENAME}' + data_name, 'rb') as f:
dl_valid = pickle.load(f)
with open(f'{TrainConfig.dataset_dir_path}//{universe}_dl_test{TYPENAME}' + data_name, 'rb') as f:
dl_test = pickle.load(f)
print("Data Loaded.")
print(f'{TrainConfig.dataset_dir_path}//{universe}_dl_train{TYPENAME}' + data_name)
# 核心代码
train_loader = _init_data_loader(dl_train, shuffle=True, drop_last=True)
valid_loader = _init_data_loader(dl_valid, shuffle=False, drop_last=False)
test_loader = _init_data_loader(dl_test, shuffle=False, drop_last=False)
device = TrainConfig.device
writer = TrainConfig.writer
# Model
model = TrainConfig.model
# LR
# train_optimizer = optim.Adam(model.parameters(), lr=TrainConfig.lr, betas=(0.9, 0.999),
# weight_decay=TrainConfig.weight_decay)
train_optimizer = TrainConfig.train_optimizer
lr_scheduler = TrainConfig.lr_scheduler
best_valid_loss = np.inf
print("==" * 10 +
f" Now is Training {TrainConfig.model_name}_{TrainConfig.seed} " + "==" * 10 + "\n")
# 训练
for step in range(TrainConfig.n_epoch):
train_loss = train_epoch(train_loader, train_optimizer=train_optimizer, lr_scheduler=lr_scheduler,
model=model,
device=device)
val_loss, valid_metrics = valid_epoch(valid_loader, model, device)
test_loss, test_metrics = valid_epoch(test_loader, model, device)
if writer is not None:
writer.add_scalars(
"Valid metrics", valid_metrics, global_step=step)
writer.add_scalars("Test metrics", test_metrics, global_step=step)
writer.add_scalar("Train loss", train_loss, global_step=step)
writer.add_scalar("Valid loss", val_loss, global_step=step)
writer.add_scalar("Test loss", test_loss, global_step=step)
writer.add_scalars("All loss Comparison",
{"train loss": train_loss,
"val loss": val_loss, "test loss": test_loss},
global_step=step)
writer.add_scalar(
"Learning rate", train_optimizer.param_groups[0]['lr'], global_step=step)
print(
"==" * 10 + f" {TrainConfig.model_name}_{TrainConfig.seed} Epoch {step} " + "==" * 10)
print("Epoch %d, train_loss %.6f, valid_loss %.6f, test_loss %.6f " %
(step, train_loss, val_loss, test_loss))
print("Valid Dataset Metrics performance:{}\n".format(valid_metrics))
print("Test Dataset Metrics performance:{}\n".format(test_metrics))
print("Learning rate :{}\n\n".format(
train_optimizer.param_groups[0]['lr']))
TrainConfig.logger.info(msg=f"\n===== Epoch {step} =====\ntrain loss:{train_loss}, "
f"valid loss:{val_loss},test loss:{test_loss}\n"
f"valid metrics:{valid_metrics}\n"
f"test metrics:{test_metrics}\n"
f"learning rate:{train_optimizer.param_groups[0]['lr']}\n")
ftxt.write("===== Epoch " + str(step) + " =====\n")
ftxt.write("train loss: " + str(train_loss) + "\n")
ftxt.write("valid loss: {}, test loss: {}\n".format(val_loss, test_loss))
ftxt.write("valid metrics: {}, test metrics: {}\n".format(valid_metrics, test_metrics))
ftxt.write("learning rate: {}\n\n\n".format(train_optimizer.param_groups[0]['lr']))
# 保存参数,新的保存策略,只保留18以上的结果
# if step <= 10:
# continue
if step % 20 == 0:
best_valid_loss = val_loss
model_param = copy.deepcopy(model.state_dict())
torch.save(model_param,
f'{TrainConfig.model_save_path}/{TrainConfig.model_name}_epoch_{step}.pth')
print("SAVING LAST EPOCH RESULT AS THE TEST RESULT!")
torch.save(model.state_dict(),
f'{TrainConfig.model_save_path}/TEST_{TrainConfig.model_name}.pth')
print("\n" + "==" * 10 + " Training Over " + "==" * 10)
writer.close()
# drop="dropc7c0"
# label="o-1c-5"
# percent="975_for_test_0608"
# DATASET=f"{drop}_{label}_{percent}"
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, default="DFT",
help="dataset type")
parser.add_argument("--universe", type=str, default="csi300",
help="dataset type")
parser.add_argument("--dataset", type=str, default="_2020_2023",
help="dataset type")
parser.add_argument("--country", type=str, default="CN_DATA",
help="dataset type")
parser.add_argument("--cuda", type=str, default="0",
help="dataset type")
parser.add_argument("--seed", type=int, default=1200,
help="dataset type")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda
set_random_seed(args.seed)
train(args.model_name,args.dataset,args.universe,args.country,args.seed)