|
7 | 7 | "# MCMC"
|
8 | 8 | ]
|
9 | 9 | },
|
10 |
| - { |
11 |
| - "cell_type": "markdown", |
12 |
| - "metadata": { |
13 |
| - "tags": [ |
14 |
| - "remove-cell" |
15 |
| - ] |
16 |
| - }, |
17 |
| - "source": [ |
18 |
| - "Think Bayes, Second Edition\n", |
19 |
| - "\n", |
20 |
| - "Copyright 2020 Allen B. Downey\n", |
21 |
| - "\n", |
22 |
| - "License: [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/)" |
23 |
| - ] |
24 |
| - }, |
25 | 10 | {
|
26 | 11 | "cell_type": "code",
|
27 | 12 | "execution_count": 1,
|
|
109 | 94 | "But the problems we can solve this way tend to be the same ones we can solve with grid algorithms.\n",
|
110 | 95 | "\n",
|
111 | 96 | "For problems with more than a few parameters, the most powerful tool we have is MCMC, which stands for \"Markov chain Monte Carlo\".\n",
|
112 |
| - "In this context, \"Monte Carlo\" refers to to methods that generate random samples from a distribution.\n", |
| 97 | + "In this context, \"Monte Carlo\" refers to methods that generate random samples from a distribution.\n", |
113 | 98 | "Unlike grid methods, MCMC methods don't try to compute the posterior distribution; they sample from it instead.\n",
|
114 | 99 | "\n",
|
115 | 100 | "It might seem strange that you can generate a sample without ever computing the distribution, but that's the magic of MCMC.\n",
|
|
3659 | 3644 | " az.plot_posterior(trace9)"
|
3660 | 3645 | ]
|
3661 | 3646 | },
|
| 3647 | + { |
| 3648 | + "cell_type": "markdown", |
| 3649 | + "metadata": { |
| 3650 | + "tags": [ |
| 3651 | + "remove-cell" |
| 3652 | + ] |
| 3653 | + }, |
| 3654 | + "source": [ |
| 3655 | + "Think Bayes, Second Edition\n", |
| 3656 | + "\n", |
| 3657 | + "Copyright 2020 Allen B. Downey\n", |
| 3658 | + "\n", |
| 3659 | + "License: [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/)" |
| 3660 | + ] |
| 3661 | + }, |
3662 | 3662 | {
|
3663 | 3663 | "cell_type": "code",
|
3664 | 3664 | "execution_count": null,
|
|
3670 | 3670 | "metadata": {
|
3671 | 3671 | "celltoolbar": "Tags",
|
3672 | 3672 | "kernelspec": {
|
3673 |
| - "display_name": "Python 3", |
| 3673 | + "display_name": "Python 3 (ipykernel)", |
3674 | 3674 | "language": "python",
|
3675 | 3675 | "name": "python3"
|
3676 | 3676 | },
|
|
3684 | 3684 | "name": "python",
|
3685 | 3685 | "nbconvert_exporter": "python",
|
3686 | 3686 | "pygments_lexer": "ipython3",
|
3687 |
| - "version": "3.8.8" |
| 3687 | + "version": "3.10.12" |
3688 | 3688 | }
|
3689 | 3689 | },
|
3690 | 3690 | "nbformat": 4,
|
|
0 commit comments