-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy path2_train.lua
811 lines (697 loc) · 43.3 KB
/
2_train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
#!~/torch/install/bin/th
-- The original VAE implementation obtained from 'https://github.com/y0ast/VAE-Torch'
require 'nn'
require 'cutorch'
require 'cunn'
require 'nngraph'
require 'optim'
local VAE = require '2_0_VAE'
require '2_1_KLDCriterion'
require '2_2_Sampler'
require 'image'
require 'paths'
local commonFuncs = require '0_commonFuncs'
local sampleManifold = require '3_sampleManifold'
if not opt then
cmd = torch.CmdLine()
cmd:text()
cmd:text()
cmd:text('Options:')
-- Global
cmd:option('-globalDataType', 'float', 'Sets the default data type for Torch tensors: float, double')
cmd:option('-seed', 1, "The default seed to be used for the random number generator: Any positive integer number")
cmd:option('-testPhase', 0, 'Whether we want to run some small tests just to make sure everything works using the test set data: 0 | 1')
cmd:option('-modelDirName', '', 'An string to be used for the name of the directory in which the reconstructions and models will be stored')
cmd:option('-modelPath', '', 'The path for a saved model')
cmd:option('-benchmark', 0, "Determines how to process the raw data. '0' is used for your own data set: 0 | 1")
-- Data reading/storing
cmd:option('-imgSize', 60, 'The size of each image/depth map')
cmd:option('-numVPs', 20, 'Number of view points for the 3D models')
cmd:option('-fromScratch', 0, "It indicates whether to use the pre-stored, resized data or do the process of resizing again: 0 | 1")
cmd:option('-imgSize', 224, '2D images size. E.g. 224')
-- Model:
cmd:option('-nCh', 74, "Base number of feature maps for each convolutional layer")
cmd:option('-nLatents', 100, 'The number of latent variables in the Z layer')
cmd:option('-tanh', 0, "Set to 1 if you want to normalize the input/output values to be between -1 and 1 instead of 0 to 1")
-- Training:
cmd:option('-batchSize', 4, 'Batch size for training (SGD): any integer number (1 or higher)')
cmd:option('-batchSizeChangeEpoch', 15, 'Changes the batch size every X epochs')
cmd:option('-batchSizeChange', 20, 'The number to be subtracted/added every opt.batchSizeChangeEpoch from opt.batchSize: any integer number (1 or higher)')
cmd:option('-targetBatchSize', 8, 'Maximum batch size (could be set equal to batchSize)')
cmd:option('-initialLR', 0.000002, 'The learning rate to be used for the first few epochs of training')
cmd:option('-lr', 0.000085, 'The learning rate: Any positive decimal value')
cmd:option('-lrDecay', 0.98, 'The rate to aneal the learning rate')
cmd:option('-maxEpochs', 80, 'The maximum number of epochs')
cmd:option('-dropoutNet', 0, 'Set to 1 to drop 15 to 18 views during training')
cmd:option('-VpToKeep', 100, 'Drops all VPs except this one. The valid range is [0 ... opt.numVPs]. Set it to > opt.numVPs to ignore')
cmd:option('-silhouetteInput', 0, 'Indicates whether only the silhouettes must be used for training')
cmd:option('-singleVPNet', 0, 'If set to 1, will perform random permutation on the input vector view point channels')
cmd:option('-conditional', 0, 'Indicates whether the model is trained conditionally')
cmd:option('-KLD', 100, 'The coefficient for the gradients of the KLD loss')
-- Experiments
cmd:option('-canvasHW', 5, 'Determines the height and width of the canvas on which the samples from the manifold will be shown on')
cmd:option('-nSamples', 6, 'Number of samples to be drawn from the prior (z), for each category (if conditional) or otherwise in total')
cmd:option('-manifoldExp', 'randomSampling', 'The experiment to be performed on the manifold : randomSampling, interpolation')
cmd:option('-sampleCategory', '', "The category name from which one would like to start generating samples. E.g. 'chair, car, airplane'. If empty, the conditional models will generate samples for all categories in the data set. Will be used if opt.manifoldExp == 'data': A valid category name for which there are examples in the train data set")
cmd:option('-mean', 0, 'The mean on the z vector elements: Any real number')
cmd:option('-var', 0, 'The variance of the z vector elements. In case manifoldExp = data then it indicates the ratio by which the predicted model variance will be multiplied by: Any positive real number')
cmd:option('-nReconstructions', 50, 'An integer indicating how many reconstuctions to be generated from the test data set')
cmd:text()
opt = cmd:parse(arg or {})
if opt.fromScratch == 1 then opt.fromScratch = true elseif opt.fromScratch == 0 then opt.fromScratch = false else print "==> Incorrect value for fromScratch argument" os.exit() end
if opt.testPhase == 1 then opt.testPhase = true elseif opt.testPhase == 0 then opt.testPhase = false else print "==> Incorrect value for testPhase argument" os.exit() end
if opt.benchmark == 1 then opt.benchmark = true elseif opt.benchmark == 0 then opt.benchmark = false else print "==> Incorrect value for 'benchmark' argument" os.exit() end
if opt.tanh == 1 then opt.tanh = true elseif opt.tanh == 0 then opt.tanh = false else print "==> Incorrect value for 'tanh' argument" os.exit() end
if opt.dropoutNet == 1 then opt.dropoutNet = true opt.VpToKeep = opt.VpToKeep + 1 elseif opt.dropoutNet == 0 then opt.dropoutNet = false opt.VpToKeep = 30 else print "==> Incorrect value for dropoutNet argument" os.exit() end
if opt.silhouetteInput == 1 then opt.silhouetteInput = true elseif opt.silhouetteInput == 0 then opt.silhouetteInput = false else print "==> Incorrect value for 'silhouetteInput' argument" os.exit() end
if opt.singleVPNet == 1 then opt.singleVPNet = true elseif opt.singleVPNet == 0 then opt.singleVPNet = false else print "==> Incorrect value for 'singleVPNet' argument" os.exit() end
if opt.conditional == 1 then opt.conditional = true elseif opt.conditional == 0 then opt.conditional = false else print "==> Incorrect value for 'conditional' argument" os.exit() end
if opt.batchSize < 2 then print '==> The batch size cannot be less than 2 for technical reasons. Batch size was set to 2' opt.batchSize = 2 end
-- Set the default data type for Torch
if opt.globalDataType == 'float' then torch.setdefaulttensortype('torch.FloatTensor') dataTypeNumBytes = 4
elseif opt.globalDataType == 'double' then torch.setdefaulttensortype('torch.DoubleTensor') dataTypeNumBytes = 8
else print ("You are not allowed to use Torch data type other than 'float' or 'double'. Please set the input 'globalDataType' to either 'float' or 'double'") end
if opt.seed > 0 then torch.manualSeed(opt.seed) end
if not opt.lr or opt.lr <= 0 then opt.lr = 0.0002 end
if opt.nCh < 1 then opt.nCh = 1 end
if opt.modelDirName == '' then opt.modelDirName = string.format('exp%.4f', tostring(torch.rand(1):totable()[1])) end
end
print ("============= Train, Validation and Test Phase =============")
if opt.imgSize == 0 then opt.imgSize = nil end
nngraph.setDebug(false)
-- Get the train, validation and test data set paths
local trainDataFiles, validationDataFiles, testDataFiles = commonFuncs.obtainDataPath(opt.benchmark, opt.testPhase, true)
if not opt.benchmark then
validationDataFiles = commonFuncs.tableConcat(validationDataFiles, testDataFiles)
end
print ("==> Loading the first training file. Please wait ...")
local data = torch.load(trainDataFiles[1])
if opt.tanh then data.dataset = commonFuncs.normalizeMinusOneToOne(data.dataset) end
local inputTensorSize = {data.dataset:size(2), opt.imgSize, opt.imgSize}
local encoder, parallelDecoder, discriminator, perceptLossModel
local batch_size = opt.batchSize
-- Build the model
local modelParams = {opt.numVPs, opt.nCh, opt.nLatents, opt.tanh, opt.singleVPNet, opt.conditional, not opt.conditional and 0 or #data.category, opt.benchmark, opt.dropoutNet}
local input = nn.Identity()()
local conditionVector = nn.Identity()()
local silhouettes = nn.Identity()()
local encoder = VAE.get_encoder(modelParams)
local mean, log_var, predClassScores
if opt.conditional then
mean, log_var, predClassScores = encoder(input):split(3)
else
mean, log_var = encoder(input):split(2)
end
local z = nn.Sampler()({mean, log_var})
local decoder = VAE.get_decoder(modelParams)
local reconstruction
if opt.conditional then
reconstruction = decoder({z, conditionVector})
else
reconstruction = decoder(z)
end
-- Build the gModule using nngraph
local model
if opt.conditional then
model = nn.gModule({input, conditionVector},{reconstruction, mean, log_var, predClassScores})
else
model = nn.gModule({input},{reconstruction, mean, log_var})
end
local modelTest = model:clone('weight', 'bias', 'gradWeight', 'gradBias', 'running_mean', 'runnig_var', 'save_mean', 'save_var')
local gMod = nn.Container()
gMod:add(model):add(modelTest):add(encoder):add(decoder)
gMod = gMod:cuda()
if pcall(require, 'cudnn') then
require 'cudnn'
cudnn.benchmark = true
cudnn.fastest = true
cudnn.convert(gMod, cudnn)
print '\n'
else
print '==> cudnn not installed'
end
-- The loss functions
local classLabelCriterion
local cr1 = nn.AbsCriterion()
cr1.sizeAverage = false
local cr2 = nn.AbsCriterion()
cr2.sizeAverage = false
local criterion = nn.ParallelCriterion():add(cr1):add(cr2)
criterion = criterion:cuda()
KLD = nn.KLDCriterion(opt.KLD):cuda()
if opt.conditional then
classLabelCriterion = nn.CrossEntropyCriterion()
classLabelCriterion.sizeAverage = false
classLabelCriterion = classLabelCriterion:cuda()
end
-- Some code to draw computational graph
-- dummy_x = torch.rand(dim_input)
-- model:forward({dummy_x})
-- Uncomment to get structure of the Variational Autoencoder
-- model = model:cuda()
-- model:forward(torch.rand(2, 20, 224, 224):cuda())
-- graph.dot(model.fg, 'Variational Autoencoder', 'net')
-- os.exit()
-- Transfer the model and the data to the GPU, if there is enough memory on the GPU for both the model and data batch
model:evaluate()
local parameters, gradients = gMod:getParameters()
print ("==> Configurations, modelDirName: " .. opt.modelDirName .. ", No. Latents: " .. opt.nLatents .. ", Batch Size: " .. batch_size .. ", Batch Size (BS) Change Epoch: " .. opt.batchSizeChangeEpoch .. ", BS Change: " .. opt.batchSizeChange .. ", Target BS: " .. opt.targetBatchSize .. ", Output Fea. Maps: " .. opt.nCh .. ", LR Decay: " .. opt.lrDecay .. ", Learning Rate: " .. opt.lr .. ", InitialLR: " .. opt.initialLR .. ", KLD Grad. Coeff:" .. opt.KLD .. ", Tanh: " .. (opt.tanh and "True" or "False") .. ', DropoutNet: ' .. (opt.dropoutNet and "True" or "False") .. ', KeepVP: ' .. opt.VpToKeep .. ', silhouetteInput: ' .. (opt.silhouetteInput and "True" or "False") .. ', singleVPNet: ' .. (opt.singleVPNet and "True" or "False") .. ', conditional: ' .. (opt.conditional and "True" or "False"))
-- Start training, validation and testing
model:training()
local epoch = 1
local lrDecayDrastic = 0
local validationTotalErrorList = {}
local trainTotalErrorList = {}
local trainKLDErrList = {}
local trainSilhouetteErrList = {}
local trainDepthMapErrList = {}
local trainClassErrList = {}
local trainClassAccuracyList = {}
local validKLDErrList = {}
local validSilErrList = {}
local validDepthMapErrList = {}
local validClassErrList = {}
local validClassAccuracyList = {}
local continueTraining = true
local config = {
learningRate = opt.initialLR
}
local state = {}
print ''
print ("==> Number of Model Parameters: " .. parameters:nElement())
while continueTraining and epoch <= opt.maxEpochs do
local totalBatchesFed = 0
local totalError = 0
local tic = torch.tic()
local numTrainSamples = 0
local empiricalMeansLabels = {}
local empiricalMeans = {}
local empiricalLog_Vars = {}
local zEmbeddings = {} -- A table with two entries: a tensor containings the sampled means, a tensor
trainTotalErrorList[epoch] = 0
trainKLDErrList[epoch] = 0
trainSilhouetteErrList[epoch] = 0
trainDepthMapErrList[epoch] = 0
trainClassErrList[epoch] = 0
trainClassAccuracyList[epoch] = 0
print ("==> Epoch: " .. epoch .. " Training for '" .. #trainDataFiles .. "' file(s) containing the train data set samples on the disk")
for i=2, #trainDataFiles + 1 do -- For all training data set files
if data.dataset:size(1) < batch_size then batch_size = data.dataset:size(1) end
indices = commonFuncs.generateBatchIndices(data.dataset:size(1), batch_size)
if #indices[#indices] ~= batch_size then
indices[#indices] = nil
end
numTrainSamples = numTrainSamples + #indices * batch_size
empiricalMeans[i-1] = torch.CudaTensor(1, opt.nLatents):zero()
empiricalLog_Vars[i-1] = torch.CudaTensor(1, opt.nLatents):zero()
empiricalMeansLabels[i-1] = torch.CudaTensor(1):zero()
ticc = torch.tic()
for t,v in ipairs(indices) do
totalBatchesFed = totalBatchesFed + 1
local targetClassIndices, targetClassHotVec, droppedInputs
local depthMaps = data.dataset:index(1,v):cuda()
-- Create hot vectors for training conditional models
if opt.conditional then
targetClassIndices = data.labels:index(1, v):cuda()
targetClassHotVec = torch.CudaTensor(batch_size, #data.category):zero()
for l=1, targetClassIndices:nElement() do
targetClassHotVec[l][targetClassIndices[l]] = 1
end
end
-- Get the silhouette for the current samples
local silhouettes = depthMaps:clone()
if opt.tanh then
silhouettes[silhouettes:gt(-1)] = 1
silhouettes[silhouettes:eq(-1)] = 0
else
silhouettes[silhouettes:gt(0)] = 1
end
local opfunc = function(x)
if x ~= parameters then
parameters:copy(x)
end
gMod:zeroGradParameters()
local reconstruction, mean, log_var, predictedClassScores
droppedInputs = commonFuncs.dropInputVPs(not opt.silhouetteInput and depthMaps or silhouettes, false, opt.dropoutNet, nil, nil, opt.singleVPNet, nil, targetClassHotVec)
local tempTensor = opt.conditional and droppedInputs[1] or droppedInputs
-- Randomly permute the input views
if not opt.singleVPNet and totalBatchesFed % (math.min(80 + epoch * 6, 320)) == 0 then -- Numbers are chosen arbitrarily
for temp=1, batch_size do
tempTensor[temp] = tempTensor[temp]:index(1, torch.randperm(opt.numVPs):long())
end
end
-- Inject random noise to the input
local tempNoisyInput = tempTensor[tempTensor:gt(0)]
if totalBatchesFed % 10 ~= 0 then
-- Commenting the next line will have little to no effect on the overall performance
tempTensor[tempTensor:gt(0)] = tempNoisyInput:add(tempNoisyInput.new():resizeAs(tempNoisyInput):rand(tempNoisyInput:size()):div(epoch <= 6 and epoch*9 or epoch <= 20 and 60 or 70)) -- Add some noise -- Because the input is not always perfectly clean -- Numbers are chosen arbitrarily
end
reconstruction, mean, log_var, predictedClassScores = unpack(model:forward(droppedInputs))
-- Fill the empirical distribution mean and log_var matrices
empiricalMeansLabels[i-1] = torch.cat(empiricalMeansLabels[i-1], data.labels:index(1, v):cuda(), 1)
empiricalMeans[i-1] = torch.cat(empiricalMeans[i-1], mean, 1)
empiricalLog_Vars[i-1] = torch.cat(empiricalLog_Vars[i-1], log_var, 1)
if t == 1 then
empiricalMeansLabels[i-1] = empiricalMeansLabels[i-1][{{2, 1+batch_size}}]
empiricalMeans[i-1] = empiricalMeans[i-1][{{2, 1+batch_size}}]
empiricalLog_Vars[i-1] = empiricalLog_Vars[i-1][{{2, 1+batch_size}}]
end
-- The error & gradient
local dEn_dwClass
if opt.conditional then
local classErr = classLabelCriterion:forward(predictedClassScores, targetClassIndices)
-- The number of examples from the current batch that are correctly classified
trainClassAccuracyList[epoch] = trainClassAccuracyList[epoch] + commonFuncs.computeClassificationAccuracy(predictedClassScores, targetClassIndices)
dEn_dwClass = classLabelCriterion:backward(predictedClassScores, targetClassIndices)
-- Inject small noise to the classification layer's gradients until epoch 5
if epoch <= 5 then
-- Commenting the next line will have little to no effect on the overall performance
dEn_dwClass:add(dEn_dwClass.new():resizeAs(dEn_dwClass):normal(0, 0.003))
end
trainClassErrList[epoch] = trainClassErrList[epoch] + classErr
end
-- Inject small noise to the reconstructions and before computing the gradients until epoch 20 -- Injects a bit more noise while training for AllVPNet and DropoutNet -- The porpuse is only to have noisy gradients
if epoch <= 20 and (not opt.singleVPNet and totalBatchesFed % (10 + epoch * 6) == 0 or totalBatchesFed % (20 + epoch * 8) == 0) then
local temp1 = reconstruction[1][reconstruction[1]:gt(0)]
local temp2 = reconstruction[2][reconstruction[2]:gt(0)]
-- Commenting the next two lines will have little to no effect on the overall performance
reconstruction[1][reconstruction[1]:gt(0)] = temp1:add(torch.rand(temp1:size()):div(epoch * 90):cuda())
reconstruction[2][reconstruction[2]:gt(0)] = temp2:add(torch.rand(temp2:size()):div(epoch * 100):cuda())
end
reconstruction[1]:cudaHalf():cuda()
reconstruction[2]:cudaHalf():cuda()
criterion:forward(reconstruction, {depthMaps, silhouettes})
local df_dw = criterion:backward(reconstruction, {depthMaps, silhouettes})
if opt.tanh then
-- Compute the error after converting the outputs back to [0-1] so that it's easier to interpret
local tempRecon = {}
tempRecon[1] = reconstruction[1]:clone()
tempRecon[2] = reconstruction[2]:clone()
tempInputs = depthMaps:clone()
tempRecon[1] = commonFuncs.normalizeBackToZeroToOne(tempRecon[1])
tempInputs = commonFuncs.normalizeBackToZeroToOne(tempInputs)
criterion:forward(tempRecon, {tempInputs, silhouettes})
end
trainSilhouetteErrList[epoch] = trainSilhouetteErrList[epoch] + criterion.criterions[2].output
trainDepthMapErrList[epoch] = trainDepthMapErrList[epoch] + criterion.criterions[1].output
local err = criterion.output
local dKLD_dmu, dKLD_dlog_var, batchTotalError
local KLDerr = KLD:forward(mean, log_var)
dKLD_dmu, dKLD_dlog_var = unpack(KLD:backward(mean, log_var))
if epoch <= 5 then
-- Add some noise to the gradients of the KL term for the first 5 epochs
-- Commenting the next two lines will have little effect on the overall performance
dKLD_dmu:add(dKLD_dmu.new():resizeAs(dKLD_dmu):normal(0, 0.003))
dKLD_dlog_var:add(dKLD_dlog_var.new():resizeAs(dKLD_dlog_var):normal(0, 0.003))
end
local error_grads
if opt.conditional then
error_grads = {df_dw, dKLD_dmu, dKLD_dlog_var, dEn_dwClass}
else
error_grads = {df_dw, dKLD_dmu, dKLD_dlog_var}
end
trainKLDErrList[epoch] = trainKLDErrList[epoch] + KLDerr
batchTotalError = err + KLDerr
-- Compute the backward pass for the model
model:backward(droppedInputs, error_grads)
targetClassIndices = nil
targetClassHotVec = nil
droppedInputs = nil
tempTensor = nil
silhouettes = nil
if totalBatchesFed % 2 == 0 then collectgarbage() end
return batchTotalError, gradients
end
x, batchTotalError = optim.adam(opfunc, parameters, config, state)
totalError = totalError + batchTotalError[1]
batchTotalError = nil
collectgarbage()
end
data.dataset = nil
data.labels = nil
data = nil
collectgarbage()
if i <= #trainDataFiles then
data = torch.load(trainDataFiles[i])
if opt.tanh then data.dataset = commonFuncs.normalizeMinusOneToOne(data.dataset) end
end
end -- for i=2, #trainDataFiles + 1
totalBatchesFed = 0
totalError = totalError/numTrainSamples/(opt.imgSize^2*opt.numVPs)
trainTotalErrorList[epoch] = totalError
trainKLDErrList[epoch] = trainKLDErrList[epoch]/numTrainSamples
trainSilhouetteErrList[epoch] = trainSilhouetteErrList[epoch]/numTrainSamples/(opt.imgSize^2*opt.numVPs)
trainDepthMapErrList[epoch] = trainDepthMapErrList[epoch]/numTrainSamples/(opt.imgSize^2*opt.numVPs)
trainClassErrList[epoch] = trainClassErrList[epoch]/numTrainSamples
trainClassAccuracyList[epoch] = trainClassAccuracyList[epoch]/numTrainSamples
if opt.conditional then
print(string.format("==> Epoch: %d,Total Loss: %.4f,KLD: %.1f,Sil. Err: %.4f,Depth Err: %.4f,Class.Err: %.3f,Acc: %.3f", epoch, totalError, trainKLDErrList[epoch], trainSilhouetteErrList[epoch], trainDepthMapErrList[epoch], trainClassErrList[epoch], trainClassAccuracyList[epoch]) .. ". No. Train 3D Models: " .. numTrainSamples)
else
print(string.format("==> Epoch: %d, Total Loss: %.4f, KLD: %.1f, Sil. Err: %.4f, Depth Err: %.4f", epoch, totalError, trainKLDErrList[epoch], trainSilhouetteErrList[epoch], trainDepthMapErrList[epoch]) .. ". No. Train 3D Models: " .. numTrainSamples)
end
gMod:clearState()
collectgarbage()
-- Validation
model:evaluate()
local validationTotalError = 0
local batchTotalError = 0
local numValidSamples = 0
if opt.tanh then data.dataset = commonFuncs.normalizeMinusOneToOne(data.dataset) end
validationTotalErrorList[epoch] = 0
validKLDErrList[epoch] = 0
validSilErrList[epoch] = 0
validDepthMapErrList[epoch] = 0
validClassErrList[epoch] = 0
validClassAccuracyList[epoch] = 0
print ("==> Epoch: " .. epoch .. " Validation for '" .. #validationDataFiles .. "' file(s) containing the validation data set samples on the disk")
data = torch.load(validationDataFiles[1])
for i=2, #validationDataFiles + 1 do
indices = commonFuncs.generateBatchIndices(data.dataset:size(1), batch_size)
if #indices[#indices] ~= batch_size then
indices[#indices] = nil
end
numValidSamples = numValidSamples + #indices * batch_size
for t,v in ipairs(indices) do
local droppedInputs, targetClassIndices, targetClassHotVec
local depthMaps = data.dataset:index(1,v):cuda()
-- Create hot vectors for training conditional models
if opt.conditional then
targetClassIndices = data.labels:index(1, v):cuda()
targetClassHotVec = torch.CudaTensor(batch_size, #data.category):fill(0)
for l=1, targetClassIndices:nElement() do
targetClassHotVec[l][targetClassIndices[l]] = 1
end
end
-- Get the silhouettes for the current samples
local silhouettes = depthMaps:clone()
if opt.tanh then
silhouettes[silhouettes:gt(-1)] = 1
silhouettes[silhouettes:eq(-1)] = 0
else
silhouettes[silhouettes:gt(0)] = 1
end
local reconstruction, mean, log_var, predictedClassScores
droppedInputs = commonFuncs.dropInputVPs(not opt.silhouetteInput and depthMaps or silhouettes, false, opt.dropoutNet, nil, nil, opt.singleVPNet, nil, targetClassHotVec)
reconstruction, mean, log_var, predictedClassScores = unpack(model:forward(droppedInputs))
if opt.conditional then
classErr = classLabelCriterion:forward(predictedClassScores, targetClassIndices)
validClassAccuracyList[epoch] = validClassAccuracyList[epoch] + commonFuncs.computeClassificationAccuracy(predictedClassScores, targetClassIndices)
validClassErrList[epoch] = validClassErrList[epoch] + classErr
end
if opt.tanh then
-- Compute the error after converting the outputs back to [0-1] scale so that it's easy to
-- compare the error with the sigmoid-generated ones
local tempRecon = {}
tempRecon[1] = reconstruction[1]:clone()
tempRecon[2] = reconstruction[2]:clone()
tempInputs = depthMaps:clone()
tempRecon[1] = commonFuncs.normalizeBackToZeroToOne(tempRecon[1])
tempInputs = commonFuncs.normalizeBackToZeroToOne(tempInputs)
criterion:forward(tempRecon, {tempInputs, silhouettes})
else
criterion:forward(reconstruction, {depthMaps, silhouettes})
end
validSilErrList[epoch] = validSilErrList[epoch] + criterion.criterions[2].output
validDepthMapErrList[epoch] = validDepthMapErrList[epoch] + criterion.criterions[1].output
local err = criterion.output
local KLDerr = KLD:forward(mean, log_var)
validKLDErrList[epoch] = validKLDErrList[epoch] + KLDerr
batchTotalError = batchTotalError + err + KLDerr
-- Some clean up
targetClassIndices = nil
targetClassHotVec = nil
depthMaps = nil
silhouettes = nil
droppedInputs = nil
if totalBatchesFed % 2 == 0 then collectgarbage() end
end
validationTotalError = validationTotalError + batchTotalError
batchTotalError = 0
-- Some clean up and load the next file, if any
data.dataset = nil
data.labels = nil
data = nil
collectgarbage()
if i <= #validationDataFiles then
data = torch.load(validationDataFiles[i])
if opt.tanh then data.dataset = commonFuncs.normalizeMinusOneToOne(data.dataset) end
end
end -- for i=2, #validationDataFiles + 1
validationTotalError = validationTotalError/numValidSamples/(opt.imgSize^2*opt.numVPs)
validationTotalErrorList[epoch] = validationTotalError
validKLDErrList[epoch] = validKLDErrList[epoch]/numValidSamples
validSilErrList[epoch] = validSilErrList[epoch]/numValidSamples/(opt.imgSize^2*opt.numVPs)
validDepthMapErrList[epoch] = validDepthMapErrList[epoch]/numValidSamples/(opt.imgSize^2*opt.numVPs)
validClassErrList[epoch] = validClassErrList[epoch]/numValidSamples
validClassAccuracyList[epoch] = validClassAccuracyList[epoch]/numValidSamples
if opt.conditional then
print(string.format("==> Epoch: %d,Total Loss: %.4f,KLD: %.1f,Sil. Err: %.4f,Depth Err: %.4f,Class. Err. %.3f,Acc: %.3f", epoch, validationTotalError, validKLDErrList[epoch], validSilErrList[epoch], validDepthMapErrList[epoch], validClassErrList[epoch], validClassAccuracyList[epoch]) .. ". No. Valid. 3D Models: " .. numValidSamples)
else
print(string.format("==> Epoch: %d, Total Loss: %.4f, KLD: %.1f, Sil. Err: %.4f, Depth Err: %.4f", epoch, validationTotalError, validKLDErrList[epoch], validSilErrList[epoch], validDepthMapErrList[epoch]) .. ". No. Valid. 3D Models: " .. numValidSamples)
end
gMod:clearState()
collectgarbage()
zEmbeddings = commonFuncs.combineMeanLogVarTensors(empiricalMeans, empiricalLog_Vars, empiricalMeansLabels)
-- Save the errors into tensors -- to be used for plotting
if epoch == 1 then
trainTotalErrTensor = torch.Tensor(1,1):fill(totalError/numTrainSamples)
validTotalErrTensor = torch.Tensor(1,1):fill(validationTotalError/numValidSamples)
else
trainTotalErrTensor = torch.cat(trainTotalErrTensor,torch.Tensor(1,1):fill(totalError/numTrainSamples),1)
validTotalErrTensor = torch.cat(validTotalErrTensor, torch.Tensor(1,1):fill(validationTotalError/numValidSamples),1)
end
if lrDecayDrastic <= 3 and epoch >= (opt.benchmark and 30 or 18) and (epoch % (opt.benchmark and 10 or 6)) == 0 then
-- Commenting-out this will have tangible effects the overall performance
lrDecayDrastic = lrDecayDrastic + 1
print ("==> Learning rate has been SIGNIFICANTLY decreased to " .. config.learningRate * 0.35 .. " from its previous value of " .. config.learningRate)
config.learningRate = config.learningRate * 0.35
KLD = nn.KLDCriterion(opt.KLD):cuda()
end
-- Reconstruct opt.nReconstructions number of test samples, chosen randomly
N = 1
if continueTraining and epoch >= (opt.benchmark and 90 or 70) and epoch % (opt.benchmark and 3 or 2) == 0 then
data = torch.load(testDataFiles[1])
reconBatchSizePerTestFile = math.floor(opt.nReconstructions / #testDataFiles)
local reconItersPerTestFile = 1
if reconBatchSizePerTestFile > 50 then -- Transfer 50 samples (50 x 20 x 224 x 224) to GPU, at most
while reconBatchSizePerTestFile > 50 do
reconBatchSizePerTestFile = math.floor(reconBatchSizePerTestFile * 0.9)
end
reconItersPerTestFile = math.ceil(opt.nReconstructions / reconBatchSizePerTestFile)
end
print ("==> Reconstructing " .. math.floor(opt.nReconstructions / #testDataFiles) * #testDataFiles .. " randomly-selected 3D models from the test set")
for j=2, #testDataFiles + 1 do
local numRecon = 0
local indices
if reconBatchSizePerTestFile <= data.dataset:size(1) and reconBatchSizePerTestFile <= opt.batchSize then
indices = torch.randperm(data.dataset:size(1)):long():split(reconBatchSizePerTestFile)
elseif reconBatchSizePerTestFile > opt.batchSize then
indices = torch.randperm(data.dataset:size(1)):long():split(opt.batchSize)
else
indices = {torch.linspace(1, data.dataset:size(1), data.dataset:size(1)):long()}
end
if #indices > 1 then
local tempIndices = {}
for ll=1, data.dataset:size(1) - reconBatchSizePerTestFile * (#indices - 1) do
tempIndices[ll] = indices[#indices][ll]
end
-- The Batch Normalization layers require 4D tensors
if #tempIndices > 1 then
indices[#indices] = torch.LongTensor(tempIndices)
else
indices[#indices] = nil
end
end
local flag = true
local recon, silhouettes
local labels
for t, v in ipairs(indices) do
-- xlua.progress(t, #indices)
local depthMaps, silhouettes, droppedInputs
if flag then
depthMaps = torch.CudaTensor(torch.LongStorage(commonFuncs.tableConcat({v:size(1)}, inputTensorSize))):copy(data.dataset:index(1,v))
-- Get the silhouettes for the current samples
silhouettes = depthMaps:clone()
if opt.tanh then
silhouettes[silhouettes:gt(-1)] = 1
silhouettes[silhouettes:eq(-1)] = 0
else
silhouettes[silhouettes:gt(0)] = 1
end
local mean, log_var, predictedClassScores
droppedInputs = commonFuncs.dropInputVPs({depthMaps, silhouettes}, true, opt.dropoutNet, nil, nil, opt.singleVPNet)
if opt.conditional then
mean, log_var, predictedClassScores = unpack(encoder:forward(opt.silhouetteInput and droppedInputs[2] or droppedInputs[1]))
local predClassVec = commonFuncs.computeClassificationAccuracy(predictedClassScores, nil, true, #data.category)
recon = decoder:forward({nn.Sampler():cuda():forward({mean, log_var}), predClassVec})
else
recon = unpack(model:forward(opt.silhouetteInput and droppedInputs[2] or droppedInputs[1]))
end
reconSil = recon[2]:clone()
recon[2] = nil
recon = recon[1]
collectgarbage()
if opt.tanh then
recon = commonFuncs.normalizeBackToZeroToOne(recon)
end
k = 1
while k <= depthMaps:size(1) and numRecon < math.floor(opt.nReconstructions / #testDataFiles) do
local tempRecon = recon[k]:view(opt.numVPs, opt.imgSize, opt.imgSize)
local tempOr = depthMaps[k]
local tempLabel = data.labels[v[k]]
local tempSilRecon, tempSilOrig
tempSilRecon = reconSil[k]
tempSilOrig = silhouettes[k]
tempSilOrig[tempSilOrig:gt(0)] = 1
local reconPath = string.format('%s/results/epoch%d/randomReconstructions/%s/test/model%d-%s', opt.modelDirName, epoch, data.category[tempLabel], N, data.category[tempLabel])
paths.mkdir(reconPath .. '/mask')
for ll=1, opt.numVPs do
image.save(reconPath .. string.format('/file%d-img%d-%d-rec.png', j - 2, v[k], ll-1), tempRecon[ll])
image.save(reconPath .. string.format('/file%d-img%d-%d-or.png', j - 2, v[k], ll-1), tempOr[ll])
image.save(reconPath .. string.format('/mask/file%d-img%d-%d-rec.png', j - 2, v[k], ll-1), tempSilRecon[ll])
image.save(reconPath .. string.format('/mask/file%d-img%d-%d-or.png', j - 2, v[k], ll-1), tempSilOrig[ll])
end
numRecon = numRecon + 1
N = N + 1
k = k + 1
end
gMod:clearState()
if numRecon >= math.floor(opt.nReconstructions / #testDataFiles) then flag = false end
recon = nil
depthMaps = nil
silhouettes = nil
collectgarbage()
end
end
data.dataset = nil
collectgarbage()
if j <= #testDataFiles then
data = torch.load(testDataFiles[j])
else
trainDataFiles = commonFuncs.randPermTableElements(trainDataFiles)
testDataFiles = commonFuncs.randPermTableElements(testDataFiles)
data = torch.load(trainDataFiles[1]) -- Load the first training file for the next epoch
if opt.tanh then data.dataset = commonFuncs.normalizeMinusOneToOne(data.dataset) end
end
end -- END for j=2, #testDataFiles + 1
else
trainDataFiles = commonFuncs.randPermTableElements(trainDataFiles)
data = torch.load(trainDataFiles[1]) -- Load the first training file for the next epoch
if opt.tanh then data.dataset = commonFuncs.normalizeMinusOneToOne(data.dataset) end
end -- END if continueTraining
-- Save the model and parameters
if continueTraining and epoch >= 18 and epoch % (opt.benchmark and 3 or 2) == 0 or epoch == opt.maxEpochs then
local modelPath = string.format('%s/model/epoch%d/', opt.modelDirName, epoch)
paths.mkdir(modelPath)
state.v = state.v:float()
state.m = state.m:float()
state.denom = state.denom:float()
collectgarbage()
print (string.format("==> Saving the model and optimizer's state parameters on iteration %d.", epoch))
gMod:clearState() -- Clear the gradInput and output fields of the modules for the model before saving
if cudnn then
gMod = cudnn.convert(gMod, nn)
end
torch.save(modelPath .. 'model.t7', gMod:clone():float())
-- torch.save(modelPath .. 'parameters.t7', parameters:clone():float())
-- torch.save(modelPath .. 'state.t7', state)
if cudnn then
gMod = cudnn.convert(gMod, cudnn)
print '\n'
end
if zEmbeddings then
for l=1, #zEmbeddings do
zEmbeddings[l] = zEmbeddings[l]:float()
end
torch.save(modelPath .. 'mean_logvar.t7', zEmbeddings)
for l=1, #zEmbeddings do
zEmbeddings[l] = zEmbeddings[l]:cuda()
end
end
state.v = state.v:cuda()
state.m = state.m:cuda()
state.denom = state.denom:cuda()
collectgarbage()
end
-- Sample/[do interpolation on] the learned manifold
if continueTraining and epoch >= (opt.benchmark and 99 or 76) and epoch % (opt.benchmark and 3 or 2) == 0 then
local samplesPath = string.format(paths.cwd() .. '/%s/results/epoch%d/manifold', opt.modelDirName, epoch)
sampleManifold.sample(opt.manifoldExp, opt.sampleCategory, opt.canvasHW, opt.nSamples, data, model, samplesPath, opt.mean, opt.var, opt.nLatents, opt.imgSize, opt.numVPs, epoch, opt.batchSize, opt.targetBatchSize, opt.testPhase, opt.tanh, opt.dropoutNet, opt.VpToKeep, opt.silhouetteInput, zEmbeddings, opt.singleVPNet, opt.conditional, nil, opt.benchmark)
end
--Save train and validation lowerbound Torch tensors on disk
local errorPath = string.format('%s/error/', opt.modelDirName)
paths.mkdir (errorPath)
local trainErPath = errorPath .. 'ErrTotalTrainSet.t7'
local trainErKLDPath = errorPath .. 'ErrKLDTrainSet.t7'
local trainErDepthMapPath = errorPath .. 'ErrDepthMapTrainSet.t7'
torch.save(trainErPath, torch.FloatTensor(trainTotalErrTensor))
torch.save(trainErKLDPath, torch.FloatTensor(trainKLDErrList))
torch.save(trainErDepthMapPath, torch.FloatTensor(trainDepthMapErrList))
local validErPath = errorPath .. 'ErrTotalValidationSet.t7'
local validErKLDPath = errorPath .. 'ErrKLDValidationSet.t7'
local validErDepthMapPath = errorPath .. 'ErrDepthMapValidationSet.t7'
torch.save(validErPath, torch.FloatTensor(validTotalErrTensor))
torch.save(validErKLDPath, torch.FloatTensor(validKLDErrList))
torch.save(validErDepthMapPath, torch.FloatTensor(validDepthMapErrList))
local trainErSilPath = errorPath .. 'ErrMaskTrainSet.t7'
local validErSilPath = errorPath .. 'ErrMaskValidationSet.t7'
torch.save(trainErSilPath, torch.FloatTensor(trainSilhouetteErrList))
torch.save(validErSilPath, torch.FloatTensor(validSilErrList))
local ErrorPlotNames = {'ErrorTotal - L1Depth-L1Sil', 'ErrorKLD - L1Depth-L1Sil', 'ErrorDepthMap - L1Depth-L1Sil', 'ErrorSil - L1Depth-L1Sil'}
local trainErrPaths = {trainErPath, trainErKLDPath, trainErDepthMapPath, trainErSilPath}
local validErrPaths = {validErPath, validErKLDPath, validErDepthMapPath, validErSilPath}
-- Save a plot of train and validation lowerbound error
local plotTitle = "exp: " .. opt.modelDirName .. ", Latent: " .. opt.nLatents .. ", Batch: " .. opt.batchSize .. ", CNN Ch.: " .. opt.nCh .. ", lr " .. opt.lr
local plotYAxis = string.format("KLD+%s", 'L1Depth-L1Sil')
commonFuncs.plotError(trainErrPaths, validErrPaths, ErrorPlotNames, plotYAxis, plotTitle, errorPath)
-- Learning rate for the first couple of epochs
if epoch <= (opt.benchmark and 16 or 10) then
config.learningRate = torch.linspace(opt.initialLR, opt.lr, opt.benchmark and 38 or 26)[(epoch + 1) * 2]
elseif epoch == (opt.benchmark and 17 or 11) then
config.learningRate = opt.lr
commonFuncs.clearOptimState(state, true)
end
-- Learning rate change
if epoch >= (opt.benchmark and 22 or 12) and epoch < (opt.benchmark and 60 or 37) and opt.lrDecay ~= 1 then
-- Commenting-out this will slightly impact the final results
print ('==> LR decay: The learning rate has been changed to ' .. config.learningRate * opt.lrDecay .. ' from its previous value of ' .. config.learningRate)
config.learningRate = config.learningRate * opt.lrDecay
elseif epoch == (opt.benchmark and 60 or 37) then
-- Commenting-out this will not impact the final results
print ('==> The learning rate has been increased to ' .. config.learningRate * 1.5 .. ' from its previous value of ' .. config.learningRate)
config.learningRate = config.learningRate * 1.5
elseif epoch > (opt.benchmark and 60 or 37) and epoch <= (opt.benchmark and 80 or 50) then
-- Commenting-out this will not impact the final results
print ('==> LR decay: The learning rate has been changed to ' .. config.learningRate * math.max(opt.lrDecay - 0.01, 0.94) .. ' from its previous value of ' .. config.learningRate)
config.learningRate = config.learningRate * math.max(opt.lrDecay - 0.01, 0.94)
elseif epoch == (opt.benchmark and 81 or 51) then
-- Commenting-out this will not impact the final results
print ('==> LR decay: The learning rate has been changed to ' .. config.learningRate * 0.6 .. ' from its previous value of ' .. config.learningRate)
config.learningRate = config.learningRate * 0.6
end
if lrDecayDrastic <= 3 and epoch >= (opt.benchmark and 24 or 18) and (epoch % (opt.benchmark and 8 or 6)) - 1 == 0 then
-- Increase the learning rate for %20 on the next epoch after drastically decreaseing it
print ("==> Learning rate has been increased to " .. config.learningRate * 1.2 .. " from its previous value of " .. config.learningRate)
config.learningRate = config.learningRate * 1.2
end
-- Change the batch size
if epoch % opt.batchSizeChangeEpoch == 0 then
local prevBatchSize = batch_size
if batch_size < opt.targetBatchSize then
print ('==> The new batch size is ' .. math.min(math.ceil(batch_size + opt.batchSizeChange), opt.targetBatchSize) .. '. The previous batch size was ' .. batch_size)
batch_size = math.min(math.ceil(batch_size + opt.batchSizeChange), opt.targetBatchSize)
elseif batch_size > opt.targetBatchSize then
print ('==> The new batch size is ' .. math.max(math.ceil(batch_size - opt.batchSizeChange), opt.targetBatchSize) .. '. The previous batch size was ' .. batch_size)
batch_size = math.max(math.ceil(batch_size - opt.batchSizeChange), opt.targetBatchSize)
end
end
print ("==> Total time for epoch " .. epoch .. ": " .. torch.toc(tic)/60 .. " minutes")
-- print ('==> Free GPU Mem (MBs) is: ' .. ({commonFuncs.getGPUMem()})[1] .. '. Total GPU Mem (MBs) is ' .. ({commonFuncs.getGPUMem()})[2])
print '\n'
epoch = epoch + 1
model:training()
end -- END the main while loop
print '\n==> Training is done. Now you can use the model for your own purposes :)'
if continueTraining == false then
print ("==> Training stopped on epoch " .. epoch .. " since validation set's lower bound was not going down")
end