-
Notifications
You must be signed in to change notification settings - Fork 32
/
4_1_visualization.lua
116 lines (100 loc) · 5.4 KB
/
4_1_visualization.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
require 'paths'
require 'sys'
cmd = torch.CmdLine()
cmd:text()
cmd:text('Options:')
cmd:option('-inputDir', '', "The directory to read the results from. The input directory contains other directories for each category (e.g. airplane, car etc).")
cmd:option('-outputDir', '', "The directory to output the .ply files")
cmd:option('-experiment', '', "Available options: reconstruction, sampling, interpolation, NN") -- NN is used for the results obtained after running the nearest neighbor experiment on conditional or unconditional samples
cmd:option('-onlyOneCat', 0, "Set to 1 if the 3D reconstruction is being done for one sample set. E.g. inputDir is 'randomSamples/airplane/sample1' rather than 'samples/")
cmd:option('-res', 224, "Resolution")
cmd:option('-maskThreshold', 0.3, "The threshold to be used for filtering out the noise using the produced silhouettes")
cmd:text()
opt = cmd:parse(arg or {})
if opt.onlyOneCat == 1 then opt.onlyOneCat = true elseif opt.onlyOneCat == 0 then opt.onlyOneCat = false else print "==> Incorrect value for 'onlyOneCat' argument" os.exit() end
local function getFileNames(thePath)
-- Returns the file names in a directory
local handle = assert(io.popen('ls -1v ' .. thePath))
local allFileNames = string.split(assert(handle:read('*a')), '\n')
for i=1, #allFileNames do allFileNames[i] = thePath .. '/' .. allFileNames[i] end
return allFileNames
end
local function splitTxt(inputStr, sep)
if sep == nil then
sep = "%s"
end
local t={} ; i=1
for str in string.gmatch(inputStr, "([^".. sep .."]+)") do
t[i] = str
i = i + 1
end
return t
end
if opt.experiment ~= 'reconstruction' and opt.experiment ~= 'sampling' and opt.experiment ~= 'interpolation' and opt.experiment ~= 'NN' then
print "'experiment' argument value is invalid. Please give either of the options 'reconstruction', 'sampling', 'interpolation' or 'NN'"
os.exit()
end
if opt.inputDir == '' then
print ('Please specify the results directory')
os.exit()
end
local outputDirName = '/3DReconstructions'
if opt.outputDir == '' then
opt.outputDir = opt.inputDir .. outputDirName
else
if not paths.dirp(opt.outputDir) then
paths.mkdir(opt.outputDir)
end
outputDirName = splitTxt(opt.outputDir, '/')
outputDirName = outputDirName[#outputDirName]
end
if not paths.filep('depthReconstruction') then
print ("Make sure you have complied the code in /depth_render_reconstruction/code/depthReconstruction_Ubuntu/depthReconstruction and place the built executable file 'depthReconstruction' in '" .. paths.cwd() .. "' directory")
os.exit()
end
if not paths.filep('camPosList.txt') then
print ("Make sure 'camPosList.txt' has been copied into '" .. paths.cwd() .. "' directory")
os.exit()
end
local dirs = getFileNames(opt.inputDir)
local totalSamples = 0
local ticTotal = torch.tic()
for i=1, not opt.onlyOneCat and #dirs or 1 do
local catName = not opt.onlyOneCat and splitTxt(dirs[i], '/') or splitTxt(opt.inputDir, '/')
local catSamples = 0
catName = catName[not opt.onlyOneCat and #catName or #catName - 1]
if catName ~= outputDirName then
print ("==> Projecting back the generated depth maps to obtain final point cloud representation for the category: " .. catName)
local subDirs = not opt.onlyOneCat and getFileNames(dirs[i]) or opt.inputDir
local ticCat = torch.tic()
for j=1, opt.experiment == 'NN' and #subDirs or 1 do
catSamples = catSamples + 1
totalSamples = totalSamples + 1
local subSubDirs = opt.experiment ~= 'NN' and subDirs or (not opt.onlyOneCat and getFileNames(subDirs[j]) or opt.inputDir)
for k=1, not opt.onlyOneCat and #subSubDirs or 1 do
splitSubSubDirs = splitTxt(not opt.onlyOneCat and subSubDirs[k] or opt.inputDir, '/')
splitSubSubDirs = not opt.onlyOneCat and dirs[i] .. '/' .. (opt.experiment == 'NN' and splitSubSubDirs[#splitSubSubDirs - 1] .. '/' or '') .. splitSubSubDirs[#splitSubSubDirs] or opt.inputDir
local splitDirNames = splitTxt(not opt.onlyOneCat and opt.experiment ~= 'NN' and splitSubSubDirs[k] or not opt.onlyOneCat and opt.experiment == 'NN' and splitSubSubDirs or opt.inputDir, '/')
if string.match(splitDirNames[#splitDirNames], 'nearest') then
nearestRecon = true
subSubSubDirs = getFileNames(getFileNames(subDirs[j])[1])
for l=1, #subSubSubDirs do
if string.match(subSubSubDirs[l], 'nearestRecon') then
nearestReconDir = subSubSubDirs[l]
end
end
else
nearestRecon = false
end
for l=1, nearestRecon and 2 or 1 do
local reconDirName = (opt.experiment == 'NN' and splitDirNames[#splitDirNames - 1] or '') .. '/' .. splitDirNames[#splitDirNames] .. (l == 2 and '/nearestRecon' or '')
paths.mkdir(opt.outputDir .. '/' .. catName .. '/' .. reconDirName)
os.execute("./depthReconstruction -input '" .. (l == 1 and splitSubSubDirs or nearestReconDir) .. "' -output '" .. opt.outputDir .. '/' .. catName .. '/' .. reconDirName .. "' -resolution " .. opt.res .. " -" .. (opt.experiment ~= 'NN' and opt.experiment or 'reconstruction') .. " -mask " .. opt.maskThreshold .. " >/dev/null 2>&1")
end
end
end
print(string.format("==> Done with getting 3D reconstruction for %s. No of samples: %d. Time took: %.1f minutes", catName, catSamples, torch.toc(ticCat)/60))
sys.sleep(5)
end
end
print(string.format("==> Done with creating all 3D reconstructions. No of total samples: %d. Total time: %.1f minutes", totalSamples, torch.toc(ticTotal)/60))