-
Notifications
You must be signed in to change notification settings - Fork 0
/
inheritance.c
150 lines (128 loc) Β· 3.35 KB
/
inheritance.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// Simulate genetic inheritance of blood type
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
// Each person has two parents and two alleles
typedef struct person
{
struct person *parents[2];
char alleles[2];
} person;
const int GENERATIONS = 3;
const int INDENT_LENGTH = 4;
person *create_family(int generations);
void print_family(person *p, int generation);
void free_family(person *p);
char random_allele();
int main(void)
{
// Seed random number generator
srand(time(0));
// Create a new family with three generations
person *p = create_family(GENERATIONS);
// Print family tree of blood types
print_family(p, 0);
// Free memory
free_family(p);
}
// Create a new individual with `generations`
person *create_family(int generations)
{
// TODO: Allocate memory for new person
person *p = malloc(sizeof(person));
if (p == NULL)
{
return NULL;
}
// If there are still generations left to create
if (generations > 1)
{
// Create two new parents for current person by recursively calling create_family
person *parent0 = create_family(generations - 1);
person *parent1 = create_family(generations - 1);
// TODO: Set parent pointers for current person
p->parents[0] = parent0;
p->parents[1] = parent1;
// TODO: Randomly assign current person's alleles based on the alleles of their parents
p->alleles[0] = p->parents[0]->alleles[rand() % 2];
p->alleles[1] = p->parents[1]->alleles[rand() % 2];
}
// If there are no generations left to create
else
{
// TODO: Set parent pointers to NULL
p->parents[0] = NULL;
p->parents[1] = NULL;
// TODO: Randomly assign alleles
p->alleles[0] = random_allele();
p->alleles[1] = random_allele();
}
// TODO: Return newly created person
return p;
}
// Free `p` and all ancestors of `p`.
void free_family(person *p)
{
// TODO: Handle base case
if (p == NULL)
{
return;
}
// TODO: Free parents recursively
free_family(p->parents[0]);
free_family(p->parents[1]);
// TODO: Free child
free(p);
}
// Print each family member and their alleles.
void print_family(person *p, int generation)
{
// Handle base case
if (p == NULL)
{
return;
}
// Print indentation
for (int i = 0; i < generation * INDENT_LENGTH; i++)
{
printf(" ");
}
// Print person
if (generation == 0)
{
printf("Child (Generation %i): blood type %c%c\n", generation, p->alleles[0], p->alleles[1]);
}
else if (generation == 1)
{
printf("Parent (Generation %i): blood type %c%c\n", generation, p->alleles[0], p->alleles[1]);
}
else
{
for (int i = 0; i < generation - 2; i++)
{
printf("Great-");
}
printf("Grandparent (Generation %i): blood type %c%c\n", generation, p->alleles[0], p->alleles[1]);
}
// Print parents of current generation
print_family(p->parents[0], generation + 1);
print_family(p->parents[1], generation + 1);
}
// Randomly chooses a blood type allele.
char random_allele()
{
int r = rand() % 3;
if (r == 0)
{
return 'A';
}
else if (r == 1)
{
return 'B';
}
else
{
return 'O';
}
}