forked from Wang-Tianwei/Implicit-feature-alignment
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwarp_mls.py
179 lines (150 loc) · 7.49 KB
/
warp_mls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# -*- coding:utf-8 -*-
# Author: RubanSeven
import math
import numpy as np
class WarpMLS:
def __init__(self, src, src_pts, dst_pts, dst_w, dst_h, trans_ratio=1.):
self.src = src
self.src_pts = src_pts
self.dst_pts = dst_pts
self.pt_count = len(self.dst_pts)
self.dst_w = dst_w
self.dst_h = dst_h
self.trans_ratio = trans_ratio
self.grid_size = 100
self.rdx = np.zeros((self.dst_h, self.dst_w))
self.rdy = np.zeros((self.dst_h, self.dst_w))
@staticmethod
def __bilinear_interp(x, y, v11, v12, v21, v22):
return (v11 * (1 - y) + v12 * y) * (1 - x) + (v21 * (1 - y) + v22 * y) * x
def generate(self):
self.calc_delta()
return self.gen_img()
def calc_delta(self):
w = np.zeros(self.pt_count, dtype=np.float32)
if self.pt_count < 2:
return
i = 0
while 1:
if self.dst_w <= i < self.dst_w + self.grid_size - 1:
i = self.dst_w - 1
elif i >= self.dst_w:
break
j = 0
while 1:
if self.dst_h <= j < self.dst_h + self.grid_size - 1:
j = self.dst_h - 1
elif j >= self.dst_h:
break
sw = 0
swp = np.zeros(2, dtype=np.float32)
swq = np.zeros(2, dtype=np.float32)
new_pt = np.zeros(2, dtype=np.float32)
cur_pt = np.array([i, j], dtype=np.float32)
k = 0
for k in range(self.pt_count):
if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]:
break
w[k] = 1. / ((i - self.dst_pts[k][0]) * (i - self.dst_pts[k][0]) +
(j - self.dst_pts[k][1]) * (j - self.dst_pts[k][1]))
sw += w[k]
swp = swp + w[k] * np.array(self.dst_pts[k])
swq = swq + w[k] * np.array(self.src_pts[k])
if k == self.pt_count - 1:
pstar = 1 / sw * swp
qstar = 1 / sw * swq
miu_s = 0
for k in range(self.pt_count):
if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]:
continue
pt_i = self.dst_pts[k] - pstar
miu_s += w[k] * np.sum(pt_i * pt_i)
cur_pt -= pstar
cur_pt_j = np.array([-cur_pt[1], cur_pt[0]])
for k in range(self.pt_count):
if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]:
continue
pt_i = self.dst_pts[k] - pstar
pt_j = np.array([-pt_i[1], pt_i[0]])
tmp_pt = np.zeros(2, dtype=np.float32)
tmp_pt[0] = np.sum(pt_i * cur_pt) * self.src_pts[k][0] - \
np.sum(pt_j * cur_pt) * self.src_pts[k][1]
tmp_pt[1] = -np.sum(pt_i * cur_pt_j) * self.src_pts[k][0] + \
np.sum(pt_j * cur_pt_j) * self.src_pts[k][1]
tmp_pt *= (w[k] / miu_s)
new_pt += tmp_pt
new_pt += qstar
else:
new_pt = self.src_pts[k]
self.rdx[j, i] = new_pt[0] - i
self.rdy[j, i] = new_pt[1] - j
j += self.grid_size
i += self.grid_size
def gen_img(self):
src_h, src_w = self.src.shape[:2]
dst = np.zeros_like(self.src, dtype=np.float32)
for i in np.arange(0, self.dst_h, self.grid_size):
for j in np.arange(0, self.dst_w, self.grid_size):
ni = i + self.grid_size
nj = j + self.grid_size
w = h = self.grid_size
if ni >= self.dst_h:
ni = self.dst_h - 1
h = ni - i + 1
if nj >= self.dst_w:
nj = self.dst_w - 1
w = nj - j + 1
di = np.reshape(np.arange(h), (-1, 1))
dj = np.reshape(np.arange(w), (1, -1))
delta_x = self.__bilinear_interp(di / h, dj / w,
self.rdx[i, j], self.rdx[i, nj],
self.rdx[ni, j], self.rdx[ni, nj])
delta_y = self.__bilinear_interp(di / h, dj / w,
self.rdy[i, j], self.rdy[i, nj],
self.rdy[ni, j], self.rdy[ni, nj])
nx = j + dj + delta_x * self.trans_ratio
ny = i + di + delta_y * self.trans_ratio
nx = np.clip(nx, 0, src_w - 1)
ny = np.clip(ny, 0, src_h - 1)
nxi = np.array(np.floor(nx), dtype=np.int32)
nyi = np.array(np.floor(ny), dtype=np.int32)
nxi1 = np.array(np.ceil(nx), dtype=np.int32)
nyi1 = np.array(np.ceil(ny), dtype=np.int32)
if len(self.src.shape) == 3:
x = np.tile(np.expand_dims(ny - nyi, axis=-1), (1, 1, 3))
y = np.tile(np.expand_dims(nx - nxi, axis=-1), (1, 1, 3))
else:
x = ny - nyi
y = nx - nxi
dst[i:i + h, j:j + w] = self.__bilinear_interp(x,
y,
self.src[nyi, nxi],
self.src[nyi, nxi1],
self.src[nyi1, nxi],
self.src[nyi1, nxi1]
)
# for di in range(h):
# for dj in range(w):
# # print(ni, nj, i, j)
# delta_x = self.__bilinear_interp(di / h, dj / w, self.rdx[i, j], self.rdx[i, nj],
# self.rdx[ni, j], self.rdx[ni, nj])
# delta_y = self.__bilinear_interp(di / h, dj / w, self.rdy[i, j], self.rdy[i, nj],
# self.rdy[ni, j], self.rdy[ni, nj])
# nx = j + dj + delta_x * self.trans_ratio
# ny = i + di + delta_y * self.trans_ratio
# nx = min(src_w - 1, max(0, nx))
# ny = min(src_h - 1, max(0, ny))
# nxi = int(nx)
# nyi = int(ny)
# nxi1 = math.ceil(nx)
# nyi1 = math.ceil(ny)
#
# dst[i + di, j + dj] = self.__bilinear_interp(ny - nyi, nx - nxi,
# self.src[nyi, nxi],
# self.src[nyi, nxi1],
# self.src[nyi1, nxi],
# self.src[nyi1, nxi1]
# )
dst = np.clip(dst, 0, 255)
dst = np.array(dst, dtype=np.uint8)
return dst