-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet.py
201 lines (157 loc) · 7.74 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch.nn as nn
from models.octave import *
def conv3x3(in_planes, out_planes, stride=1, groups=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, groups=groups, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, norm_layer=None):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, norm_layer=None):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, alpha, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, norm_layer=None):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self.inplanes = 64
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layers = []
#stage 2
self.layer2_1 = Residual_Unit_first(alpha=alpha, num_in=64, num_mid=64, num_out=256, first_block=True, stride=(1, 1))
self.layer2_2 = Residual_Unit(alpha=alpha, num_in=256, num_mid=64, num_out=256, first_block=False, stride=(1, 1))
self.layer2_3 = Residual_Unit(alpha=alpha, num_in=256, num_mid=64, num_out=256, first_block=False, stride=(1, 1))
#stage 3
self.layer3_1 = Residual_Unit(alpha=alpha, num_in=256, num_mid=128, num_out=512, first_block=True, stride=(2, 2))
self.layer3_2 = Residual_Unit(alpha=alpha, num_in=512, num_mid=128, num_out=512, first_block=False, stride=(1, 1))
self.layer3_3 = Residual_Unit(alpha=alpha, num_in=512, num_mid=128, num_out=512, first_block=False, stride=(1, 1))
self.layer3_4 = Residual_Unit(alpha=alpha, num_in=512, num_mid=128, num_out=512, first_block=False, stride=(1, 1))
#stage 4
self.layer4_1 = Residual_Unit(alpha=alpha, num_in=512, num_mid=256, num_out=1024, first_block=True, stride=(2, 2))
self.layer4_2 = Residual_Unit(alpha=alpha, num_in=1024, num_mid=256, num_out=1024, first_block=False, stride=(1, 1))
self.layer4_3 = Residual_Unit(alpha=alpha, num_in=1024, num_mid=256, num_out=1024, first_block=False, stride=(1, 1))
self.layer4_4 = Residual_Unit(alpha=alpha, num_in=1024, num_mid=256, num_out=1024, first_block=False, stride=(1, 1))
self.layer4_5 = Residual_Unit(alpha=alpha, num_in=1024, num_mid=256, num_out=1024, first_block=False, stride=(1, 1))
self.layer4_6 = Residual_Unit(alpha=alpha, num_in=1024, num_mid=256, num_out=1024, first_block=False, stride=(1, 1))
#stage 5
self.layer5_1 = Residual_Unit(alpha=alpha, num_in=1024, num_mid=512, num_out=2048, first_block=True, stride=(2, 2))
self.layer5_2 = Residual_Unit(alpha=alpha, num_in=2048, num_mid=512, num_out=2048, first_block=False, stride=(1, 1))
self.layer5_3 = Residual_Unit_last(alpha=alpha, num_in=2048, num_mid=512, num_out=2048, first_block=False, stride=(1, 1))
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
hf_x, lf_x = self.layer2_1(x)
hf_x, lf_x = self.layer2_2(hf_x, lf_x)
hf_x, lf_x = self.layer2_3(hf_x, lf_x)
hf_x, lf_x = self.layer3_1(hf_x, lf_x)
hf_x, lf_x = self.layer3_2(hf_x, lf_x)
hf_x, lf_x = self.layer3_3(hf_x, lf_x)
hf_x, lf_x = self.layer3_4(hf_x, lf_x)
hf_x, lf_x = self.layer4_1(hf_x, lf_x)
hf_x, lf_x = self.layer4_2(hf_x, lf_x)
hf_x, lf_x = self.layer4_3(hf_x, lf_x)
hf_x, lf_x = self.layer4_4(hf_x, lf_x)
hf_x, lf_x = self.layer4_5(hf_x, lf_x)
hf_x, lf_x = self.layer4_6(hf_x, lf_x)
hf_x, lf_x = self.layer5_1(hf_x, lf_x)
hf_x, lf_x = self.layer5_2(hf_x, lf_x)
x = self.layer5_3(hf_x, lf_x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def octResnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], 0.5, **kwargs)
# if pretrained:
# model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model