-
Notifications
You must be signed in to change notification settings - Fork 0
/
583. Delete Operation for Two Strings.cpp
108 lines (79 loc) · 3.37 KB
/
583. Delete Operation for Two Strings.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
// -----Approach 1: Memoization ------------------------------------------------------------
/*
Problem Link: https://leetcode.com/problems/delete-operation-for-two-strings/
Time: 1332 ms (Beats 5.4%), Space: 740 MB (Beats 5.4%)
*/
class Solution {
private:
int sol(int i, int j, vector<vector<int>>& dp, string word1, string word2){
if(i == 0 || j == 0) return 0;
if(dp[i][j] != -1) return dp[i][j];
if(word1[i-1] == word2[j-1]) return 1 + sol(i-1, j-1, dp, word1, word2);
return dp[i][j] = max( sol(i-1, j, dp, word1, word2), sol(i, j-1, dp, word1, word2) );
}
int longestCommonSubsequence(string word1, string word2) {
int n= word1.size();
int m= word2.size();
vector<vector<int>> dp(n+1, vector<int>(m+1, -1));
return sol(n, m, dp, word1, word2);
}
public:
int minDistance(string word1, string word2) {
// you can use the example to see that the len of deletion operation in one string would be=> len(string) - len(LCS)
return word1.size() + word2.size() - 2*longestCommonSubsequence(word1, word2);
}
};
// -----Approach 2: Tabulation ------------------------------------------------------------
/*
Problem Link: https://leetcode.com/problems/delete-operation-for-two-strings/
Time: 32 ms (Beats 34.4%), Space: 12.3 MB (Beats 40.88%)
*/
class Solution {
private:
int longestCommonSubsequence(string word1, string word2) {
int n= word1.size();
int m= word2.size();
vector<vector<int>> dp(n+1, vector<int>(m+1, 0)); // i will be treated as i-1 for the recurrence matching case
for(int i=0; i<=n; i++) dp[i][0]= 0;
for(int j=0; j<=m; j++) dp[0][j]= 0; // on splitting the sequence, j can have values from 0 to m : making the base case
for(int i=1; i<=n; i++){
for(int j=1; j<=m; j++){
if(word1[i-1] == word2[j-1]) dp[i][j]= 1 + dp[i-1][j-1];
else dp[i][j] = max( dp[i-1][j], dp[i][j-1] );
}
}
return dp[n][m];
}
public:
int minDistance(string word1, string word2) {
// you can use the example to see that the len of deletion operation in one string would be=> len(string) - len(LCS)
return word1.size() + word2.size() - 2*longestCommonSubsequence(word1, word2);
}
};
// -----Approach 3: Space Optimization ------------------------------------------------------------
/*
Problem Link: https://leetcode.com/problems/delete-operation-for-two-strings/
Time: 15 ms (Beats 82.96%), Space: 6.9 MB (Beats 95.57%)
*/
class Solution {
private:
int longestCommonSubsequence(string word1, string word2) {
int n= word1.size();
int m= word2.size();
vector<int> prev(m+1, 0), curr(m+1, 0);
for(int j=0; j<=m; j++) prev[j]= 0;
for(int i=1; i<=n; i++){
for(int j=1; j<=m; j++){
if(word1[i-1] == word2[j-1]) curr[j]= 1 + prev[j-1];
else curr[j] = max( prev[j], curr[j-1] );
}
prev= curr;
}
return prev[m];
}
public:
int minDistance(string word1, string word2) {
// you can use the example to see that the len of deletion operation in one string would be=> len(string) - len(LCS)
return word1.size() + word2.size() - 2*longestCommonSubsequence(word1, word2);
}
};