-
Notifications
You must be signed in to change notification settings - Fork 31
/
generator.py
228 lines (176 loc) · 9.3 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import cv2
import copy
import numpy as np
from keras.utils import Sequence
from utils.bbox import BoundBox, bbox_iou
from utils.image import apply_random_scale_and_crop, random_distort_image, random_flip, correct_bounding_boxes
class BatchGenerator(Sequence):
def __init__(self,
instances,
anchors,
labels,
downsample=32, # ratio between network input's size and network output's size, 32 for YOLOv3
max_box_per_image=30,
batch_size=1,
min_net_size=320,
max_net_size=608,
shuffle=True,
jitter=True,
norm=None
):
self.instances = instances
self.batch_size = batch_size
self.labels = labels
self.downsample = downsample
self.max_box_per_image = max_box_per_image
self.min_net_size = (min_net_size//self.downsample)*self.downsample
self.max_net_size = (max_net_size//self.downsample)*self.downsample
self.shuffle = shuffle
self.jitter = jitter
self.norm = norm
self.anchors = [BoundBox(0, 0, anchors[2*i], anchors[2*i+1]) for i in range(len(anchors)//2)]
self.net_h = 416
self.net_w = 416
if shuffle: np.random.shuffle(self.instances)
def __len__(self):
return int(np.ceil(float(len(self.instances))/self.batch_size))
def __getitem__(self, idx):
# get image input size, change every 10 batches
net_h, net_w = self._get_net_size(idx)
base_grid_h, base_grid_w = net_h//self.downsample, net_w//self.downsample
# determine the first and the last indices of the batch
l_bound = idx*self.batch_size
r_bound = (idx+1)*self.batch_size
if r_bound > len(self.instances):
r_bound = len(self.instances)
l_bound = r_bound - self.batch_size
x_batch = np.zeros((r_bound - l_bound, net_h, net_w, 3)) # input images
t_batch = np.zeros((r_bound - l_bound, 1, 1, 1, self.max_box_per_image, 4)) # list of groundtruth boxes
# initialize the inputs and the outputs
yolo_1 = np.zeros((r_bound - l_bound, 1*base_grid_h, 1*base_grid_w, len(self.anchors)//3, 4+1+len(self.labels))) # desired network output 1
yolo_2 = np.zeros((r_bound - l_bound, 2*base_grid_h, 2*base_grid_w, len(self.anchors)//3, 4+1+len(self.labels))) # desired network output 2
yolo_3 = np.zeros((r_bound - l_bound, 4*base_grid_h, 4*base_grid_w, len(self.anchors)//3, 4+1+len(self.labels))) # desired network output 3
yolos = [yolo_3, yolo_2, yolo_1]
dummy_yolo_1 = np.zeros((r_bound - l_bound, 1))
dummy_yolo_2 = np.zeros((r_bound - l_bound, 1))
dummy_yolo_3 = np.zeros((r_bound - l_bound, 1))
instance_count = 0
true_box_index = 0
# do the logic to fill in the inputs and the output
for train_instance in self.instances[l_bound:r_bound]:
# augment input image and fix object's position and size
img, all_objs = self._aug_image(train_instance, net_h, net_w)
for obj in all_objs:
# find the best anchor box for this object
max_anchor = None
max_index = -1
max_iou = -1
shifted_box = BoundBox(0,
0,
obj['xmax']-obj['xmin'],
obj['ymax']-obj['ymin'])
for i in range(len(self.anchors)):
anchor = self.anchors[i]
iou = bbox_iou(shifted_box, anchor)
if max_iou < iou:
max_anchor = anchor
max_index = i
max_iou = iou
# determine the yolo to be responsible for this bounding box
yolo = yolos[max_index//3]
grid_h, grid_w = yolo.shape[1:3]
# determine the position of the bounding box on the grid
center_x = .5*(obj['xmin'] + obj['xmax'])
center_x = center_x / float(net_w) * grid_w # sigma(t_x) + c_x
center_y = .5*(obj['ymin'] + obj['ymax'])
center_y = center_y / float(net_h) * grid_h # sigma(t_y) + c_y
# determine the sizes of the bounding box
w = np.log((obj['xmax'] - obj['xmin']) / float(max_anchor.xmax)) # t_w
h = np.log((obj['ymax'] - obj['ymin']) / float(max_anchor.ymax)) # t_h
box = [center_x, center_y, w, h]
# determine the index of the label
obj_indx = self.labels.index(obj['name'])
# determine the location of the cell responsible for this object
grid_x = int(np.floor(center_x))
grid_y = int(np.floor(center_y))
# assign ground truth x, y, w, h, confidence and class probs to y_batch
yolo[instance_count, grid_y, grid_x, max_index%3] = 0
yolo[instance_count, grid_y, grid_x, max_index%3, 0:4] = box
yolo[instance_count, grid_y, grid_x, max_index%3, 4 ] = 1.
yolo[instance_count, grid_y, grid_x, max_index%3, 5+obj_indx] = 1
# assign the true box to t_batch
true_box = [center_x, center_y, obj['xmax'] - obj['xmin'], obj['ymax'] - obj['ymin']]
t_batch[instance_count, 0, 0, 0, true_box_index] = true_box
true_box_index += 1
true_box_index = true_box_index % self.max_box_per_image
# assign input image to x_batch
if self.norm != None:
x_batch[instance_count] = self.norm(img)
else:
# plot image and bounding boxes for sanity check
for obj in all_objs:
cv2.rectangle(img, (obj['xmin'],obj['ymin']), (obj['xmax'],obj['ymax']), (255,0,0), 3)
cv2.putText(img, obj['name'],
(obj['xmin']+2, obj['ymin']+12),
0, 1.2e-3 * img.shape[0],
(0,255,0), 2)
x_batch[instance_count] = img
# increase instance counter in the current batch
instance_count += 1
return [x_batch, t_batch, yolo_1, yolo_2, yolo_3], [dummy_yolo_1, dummy_yolo_2, dummy_yolo_3]
def _get_net_size(self, idx):
if idx%10 == 0:
net_size = self.downsample*np.random.randint(self.min_net_size/self.downsample, \
self.max_net_size/self.downsample+1)
print("resizing: ", net_size, net_size)
self.net_h, self.net_w = net_size, net_size
return self.net_h, self.net_w
def _aug_image(self, instance, net_h, net_w):
image_name = instance['filename']
image = cv2.imread(image_name) # RGB image
if image is None: print('Cannot find ', image_name)
image = image[:,:,::-1] # RGB image
image_h, image_w, _ = image.shape
# determine the amount of scaling and cropping
dw = self.jitter * image_w;
dh = self.jitter * image_h;
new_ar = (image_w + np.random.uniform(-dw, dw)) / (image_h + np.random.uniform(-dh, dh));
scale = np.random.uniform(0.25, 2);
if (new_ar < 1):
new_h = int(scale * net_h);
new_w = int(net_h * new_ar);
else:
new_w = int(scale * net_w);
new_h = int(net_w / new_ar);
dx = int(np.random.uniform(0, net_w - new_w));
dy = int(np.random.uniform(0, net_h - new_h));
# apply scaling and cropping
im_sized = apply_random_scale_and_crop(image, new_w, new_h, net_w, net_h, dx, dy)
# randomly distort hsv space
im_sized = random_distort_image(im_sized)
# randomly flip
flip = np.random.randint(2)
im_sized = random_flip(im_sized, flip)
# correct the size and pos of bounding boxes
all_objs = correct_bounding_boxes(instance['object'], new_w, new_h, net_w, net_h, dx, dy, flip, image_w, image_h)
return im_sized, all_objs
def on_epoch_end(self):
if self.shuffle: np.random.shuffle(self.instances)
def num_classes(self):
return len(self.labels)
def size(self):
return len(self.instances)
def get_anchors(self):
anchors = []
for anchor in self.anchors:
anchors += [anchor.xmax, anchor.ymax]
return anchors
def load_annotation(self, i):
annots = []
for obj in self.instances[i]['object']:
annot = [obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'], self.labels.index(obj['name'])]
annots += [annot]
if len(annots) == 0: annots = [[]]
return np.array(annots)
def load_image(self, i):
return cv2.imread(self.instances[i]['filename'])