The Conceptual Bridge between the OmegaKG Brain and the IDE Hands.
See ARCHITECTURE.md for full system model.
All Sources → InGest-LLM (single digestor)
↓
PostgreSQL + Neo4j (persistent brain)
↙ ↘
memOS.MCP OmegaVault
↓ ↓
IDE Linear/GitHub
retrieve_context: Semantic search from PGVectorget_concepts: Traversal of Neo4j knowledge graphget_constraints: Rule enforcement from Mimir
- Redis Integration: Fast, ephemeral storage
- Scratchpad: Trace reasoning steps (
scratch_write/read) - Session Context: Manage working state (
set/get_working_memory)
mark_significant: Flag experiences for promotionpromote_memory: Send to InGest-LLM for permanent storage- Auto-promotion: Significance threshold triggers automatic ingestion
memOS.MCP requires three infrastructure services:
- Redis (port 6379) - Ephemeral working memory
- Ollama (port 11434) - Embeddings with bge-m3 model
- PostgreSQL (port 5800) - Persistent vector storage
# Windows: Start all infrastructure services
cd memos.MCP
.\start-memos.ps1
# Verify services are healthy
poetry run python scripts\health_check.py
# Initialize database schema
poetry run python scripts\init_db.py
# Start memOS.MCP server
poetry run python -m memos_mcp --sse# Start services with Docker Compose
docker-compose up -d
# Check status
docker-compose ps
# Initialize database
poetry run python scripts\init_db.py
# Start server
poetry run python -m memos_mcp --sse# Set mock mode (uses in-memory storage)
$env:MEMOS_MOCK_MODE = "true"
# Start server
poetry run python -m memos_mcp --sseFor detailed setup instructions, see INFRASTRUCTURE_SETUP.md
Create .env file:
# Redis (Ephemeral Memory)
REDIS_HOST=localhost
REDIS_PORT=6379
# Ollama (Embeddings)
OLLAMA_BASE_URL=http://localhost:11434
EMBEDDING_MODEL=bge-m3
EMBEDDING_DIMENSION=1024
# PostgreSQL (Persistent Storage)
POSTGRES_HOST=localhost
POSTGRES_PORT=5800
POSTGRES_DB=omega_kg_stable
POSTGRES_USER=omega_user
POSTGRES_PASSWORD=your_secure_password
POSTGRES_SCHEMA=memos
# Server
FASTMCP_SERVER_PORT=8768
FASTMCP_SERVER_HOST=0.0.0.0
FASTMCP_SERVER_TRANSPORT=sse| Tool | Category | Usage |
|---|---|---|
retrieve_context |
Query | retrieve_context(query="auth flow", limit=5) |
get_concepts |
Query | get_concepts(concept_id="UserAuth", depth=2) |
scratch_write |
Memory | scratch_write(content="Planning schema...") |
promote_memory |
Learn | promote_memory(memory_id="123") |
- FastMCP: Server framework
- PGVectorStore: Async vector retrieval
- RedisMemoryClient: Ephemeral storage manager
- Logic Layer: Integrates databases and enforces constraints
- OmegaVault/ApexSigma/Development/Projects/memos.MCP - Centralized Documentation
- ARCHITECTURE.md - System Design
- BUILD.md - Build Guide