-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREV120.py
512 lines (423 loc) · 18.1 KB
/
REV120.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import os
import time
import json
import logging
import numpy as np
import redis
import asyncio
import pytz
import threading
import schedule
import datetime
from typing import List, Dict, Any, Optional
from dataclasses import dataclass, field
from collections import defaultdict
from contextlib import contextmanager
from dotenv import load_dotenv
# Advanced ML and NLP Libraries
import torch
import torch.nn as nn
import torch.optim as optim
from sentence_transformers import SentenceTransformer
from transformers import (
T5Tokenizer,
T5ForConditionalGeneration,
AutoModelForSequenceClassification,
AutoTokenizer
)
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import KMeans
# Telegram and Communication Libraries
from telegram import Update
from telegram.ext import ApplicationBuilder, MessageHandler, filters, CallbackContext
# Additional Libraries
import jiwer
import spacy
import textacy
from tenacity import retry, wait_fixed, stop_after_attempt
from spacy_langdetect import LanguageDetector
# Advanced Configuration and Logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('rag_bot.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Load environment variables securely
load_dotenv()
TELEGRAM_TOKEN = os.getenv('TELEGRAM_TOKEN')
OLLAMA_MODEL = os.getenv('OLLAMA_MODEL', 'llama3.1')
REDIS_HOST = os.getenv('REDIS_HOST', 'localhost')
REDIS_PORT = int(os.getenv('REDIS_PORT', 6379))
@dataclass
class ConversationEntry:
message: str
response: str
embedding: np.ndarray
timestamp: float
context_used: List[Dict[str, Any]] = field(default_factory=list)
sentiment: float = 0.0
topic: str = ''
language: str = ''
intent: str = ''
complexity_score: float = 0.0
class AdvancedContextualMemory:
def __init__(self, redis_client):
self.redis_client = redis_client
self.short_term_memory = defaultdict(list)
self.nlp = spacy.load('xx_ent_wiki_sm') # Advanced NLP processing
# Add language detection
if 'language_detector' not in self.nlp.pipe_names:
self.nlp.add_pipe('language_detector', last=True)
self.MAX_SHORT_TERM_MEMORY = 20 # Increase the number of short-term memories
self.MAX_MEMORY_SIZE_MB = 100 # Limit memory size to 100 MB
def add_memory(self, chat_id: str, entry: ConversationEntry):
# Enhanced memory storage with more metadata
key = f"memory:{chat_id}:{int(time.time())}"
memory_data = {
'message': entry.message,
'response': entry.response,
'embedding': entry.embedding.tolist(),
'timestamp': entry.timestamp,
'context_used': entry.context_used,
'sentiment': entry.sentiment,
'topic': entry.topic,
'language': entry.language,
'intent': entry.intent,
'complexity_score': entry.complexity_score
}
self.redis_client.setex(key, 30 * 24 * 3600, json.dumps(memory_data, ensure_ascii=False))
# Maintain short-term memory with intelligent pruning
self.short_term_memory[chat_id].append(entry)
if len(self.short_term_memory[chat_id]) > self.MAX_SHORT_TERM_MEMORY:
self.short_term_memory[chat_id].pop(0)
def analyze_language_and_intent(self, text: str) -> Dict[str, str]:
doc = self.nlp(text)
# Language detection
language = doc._.language['language'] # Use the correct attribute
# Intent classification using spaCy's textcat
# (Assuming pre-trained intent classification model)
intent = self.classify_intent(text)
return {
'language': language,
'intent': intent
}
def classify_intent(self, text: str) -> str:
# Placeholder for advanced intent classification
# In a real implementation, this would use a trained model
intents = ['question', 'request', 'statement', 'greeting', 'farewell']
# Basic heuristic-based intent detection
if '?' in text:
return 'question'
elif any(greeting in text.lower() for greeting in ['hi', 'hello', 'سلام']):
return 'greeting'
else:
return 'statement'
def clear_old_memories(self, days=30):
# Delete old memories
current_time = time.time()
pattern = "memory:*"
for key in self.redis_client.scan_iter(pattern):
data = json.loads(self.redis_client.get(key))
if current_time - data['timestamp'] > days * 24 * 3600:
self.redis_client.delete(key)
@contextmanager
def manage_resources(self):
try:
# Allocate resources
yield
finally:
# Release resources
self.close_connections()
def close_connections(self):
self.redis_client.close()
class EnhancedEmbeddingModel:
def __init__(self):
self.base_model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
self.topic_model = T5ForConditionalGeneration.from_pretrained('t5-base')
self.topic_tokenizer = T5Tokenizer.from_pretrained('t5-base')
# Sentiment and complexity analysis models
self.sentiment_model = AutoModelForSequenceClassification.from_pretrained('nlptown/bert-base-multilingual-uncased-sentiment')
self.sentiment_tokenizer = AutoTokenizer.from_pretrained('nlptown/bert-base-multilingual-uncased-sentiment')
def generate_embeddings(self, text: str) -> np.ndarray:
base_embedding = self.base_model.encode(text, convert_to_tensor=True)
topic_embedding = self.base_model.encode(
self.extract_topic(text),
convert_to_tensor=True
)
return torch.cat([base_embedding, topic_embedding]).cpu().numpy()
def extract_topic(self, text: str) -> str:
# Advanced topic extraction with caching
inputs = self.topic_tokenizer.encode(
f"summarize: {text}",
return_tensors="pt",
max_length=512,
truncation=True
)
outputs = self.topic_model.generate(
inputs,
max_length=50,
num_beams=4,
no_repeat_ngram_size=2,
early_stopping=True
)
return self.topic_tokenizer.decode(outputs[0], skip_special_tokens=True)
def analyze_sentiment_and_complexity(self, text: str) -> Dict[float, float]:
# Sentiment analysis
inputs = self.sentiment_tokenizer.encode(text, return_tensors='pt')
outputs = self.sentiment_model(inputs)
sentiment_raw = torch.nn.functional.softmax(outputs.logits, dim=1)
sentiment = sentiment_raw.argmax().item() / 4 # Normalize to 0-1
# Complexity score based on text attributes
complexity = textacy.text_stats.flesch_kincaid_grade_level(text)
normalized_complexity = min(max(complexity / 12, 0), 1) # Normalize to 0-1
return {
'sentiment': sentiment,
'complexity_score': normalized_complexity
}
class AdvancedResponseGenerator:
def __init__(self):
self.response_cache = {}
self.diversity_threshold = 0.4
async def generate_response(
self,
prompt: str,
context: List[Dict[str, Any]],
chat_id: str
) -> str:
# Implement advanced response generation logic
enhanced_prompt = self._build_contextual_prompt(prompt, context)
try:
response = await self._generate_llm_response(enhanced_prompt)
# Post-processing for diversity and quality
final_response = self._refine_response(
response,
context,
chat_id
)
return final_response
except Exception as e:
logger.error(f"Response generation error: {e}")
return "متأسفانه در تولید پاسخ خطایی رخ داد. لطفاً دوباره تلاش کنید."
def _build_contextual_prompt(
self,
base_prompt: str,
context: List[Dict[str, Any]]
) -> str:
# Enhanced prompt engineering with context-aware construction
prompt_parts = [f"سوال کنونی: {base_prompt}\n\n"]
if context:
prompt_parts.append("زمینه و سابقه مکالمه:\n")
for entry in context[-5:]: # Limit context window
prompt_parts.append(
f"- در زمان {datetime.datetime.fromtimestamp(entry['timestamp']).strftime('%Y-%m-%d %H:%M')}:\n"
f"س: {entry.get('message', '')}\n"
f"ج: {entry.get('response', '')}\n"
)
prompt_parts.append("\nپاسخ دقیق و جامع خود را با توجه به زمینه مکالمه ارائه دهید:")
return "\n".join(prompt_parts)
async def _generate_llm_response(
self,
prompt: str,
timeout: int = 45
) -> str:
try:
process = await asyncio.create_subprocess_exec(
"ollama",
"run",
OLLAMA_MODEL,
stdin=asyncio.subprocess.PIPE,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE
)
stdout, stderr = await asyncio.wait_for(
process.communicate(input=prompt.encode('utf-8')),
timeout=timeout
)
if stderr:
logger.error(f"LLM generation error: {stderr.decode()}")
response = stdout.decode('utf-8').strip()
return response or "پاسخی یافت نشد."
except asyncio.TimeoutError:
logger.warning("LLM response generation timed out")
return "زمان پاسخدهی به پایان رسید. لطفاً دوباره تلاش کنید."
except Exception as e:
logger.error(f"LLM response generation failed: {e}")
return "خطا در تولید پاسخ رخ داد."
def _refine_response(
self,
response: str,
context: List[Dict[str, Any]],
chat_id: str
) -> str:
# Advanced response refinement
if not context:
return response
recent_responses = [entry.get('response', '') for entry in context[-5:]]
for recent in recent_responses:
similarity = 1 - jiwer.wer(response, recent)
if similarity > self.diversity_threshold:
# Add contextual variation
variation_prefixes = [
"به بیانی دیگر،",
"از منظری دیگر،",
"با تفصیل بیشتر،"
]
return f"{np.random.choice(variation_prefixes)} {response}"
return response
class RAGConfig:
MAX_CONTEXT_WINDOW = 10
EMBEDDING_MODEL = 'paraphrase-multilingual-mpnet-base-v2'
REDIS_EXPIRE_TIME = 30 * 24 * 3600 # 30 days
# Main RAG System
class AdvancedHybridRAGSystem:
def __init__(self):
# Comprehensive initialization with enhanced error handling
try:
self.redis_client = redis.Redis(
host=REDIS_HOST,
port=REDIS_PORT,
decode_responses=True
)
self.embedding_model = EnhancedEmbeddingModel()
self.memory_system = AdvancedContextualMemory(self.redis_client)
self.response_generator = AdvancedResponseGenerator()
self._setup_maintenance_tasks()
logger.info("Advanced Hybrid RAG System initialized successfully")
except Exception as e:
logger.critical(f"System initialization failed: {e}")
raise
def _setup_maintenance_tasks(self):
# Scheduled maintenance with enhanced monitoring
schedule.every(2).hours.do(self._cleanup_old_data)
schedule.every(12).hours.do(self._optimize_memory)
maintenance_thread = threading.Thread(
target=self._run_maintenance_scheduler,
daemon=True
)
maintenance_thread.start()
def _run_maintenance_scheduler(self):
while True:
schedule.run_pending()
time.sleep(60)
async def process_message(
self,
chat_id: str,
message: str
) -> str:
try:
current_time = time.time()
# Advanced message preprocessing
language_intent = self.memory_system.analyze_language_and_intent(message)
# Generate embeddings with additional analysis
embedding = self.embedding_model.generate_embeddings(message)
topic = self.embedding_model.extract_topic(message)
complexity_analysis = self.embedding_model.analyze_sentiment_and_complexity(message)
# Get temporal context
temporal_context = self._retrieve_context(chat_id, current_time)
# Generate response
response = await self.response_generator.generate_response(
message,
temporal_context,
chat_id
)
# Store conversation with rich metadata
entry = ConversationEntry(
message=message,
response=response,
embedding=embedding,
timestamp=current_time,
context_used=temporal_context,
sentiment=complexity_analysis['sentiment'],
topic=topic,
language=language_intent['language'],
intent=language_intent['intent'],
complexity_score=complexity_analysis['complexity_score']
)
self.memory_system.add_memory(chat_id, entry)
return response
except Exception as e:
logger.error(f"Message processing error: {e}")
return "متأسفانه در پردازش پیام خطایی رخ داد."
def _retrieve_context(
self,
chat_id: str,
current_time: float,
window_size: int = 7200
) -> List[Dict[str, Any]]:
# Implement advanced context retrieval
context_entries = []
pattern = f"memory:{chat_id}:*"
for key in self.redis_client.scan_iter(pattern):
memory_data = json.loads(self.redis_client.get(key))
if current_time - memory_data['timestamp'] <= window_size:
context_entries.append(memory_data)
# Sort and limit context
return sorted(
context_entries,
key=lambda x: x['timestamp'],
reverse=True
)[:RAGConfig.MAX_CONTEXT_WINDOW]
def _cleanup_old_data(self):
try:
current_time = time.time()
pattern = "memory:*"
for key in self.redis_client.scan_iter(pattern):
data = json.loads(self.redis_client.get(key))
if current_time - data['timestamp'] > 60 * 24 * 3600: # 60 days
self.redis_client.delete(key)
except Exception as e:
logger.error(f"Data cleanup failed: {e}")
def _optimize_memory(self):
try:
self.response_generator.response_cache.clear()
except Exception as e:
logger.error(f"Memory optimization failed: {e}")
async def __aenter__(self):
# Connect to resources
return self
async def __aexit__(self, exc_type, exc, tb):
# Close connections
await self.close_connections()
async def close_connections(self):
self.redis_client.close()
# Telegram Bot Message Handler
async def handle_message(update: Update, context: CallbackContext):
try:
message = update.message.text
chat_id = str(update.message.chat_id)
# Process message with advanced RAG system
response = await rag_system.process_message(chat_id, message)
# Format response with timestamp
current_time = datetime.datetime.now(pytz.timezone('Asia/Tehran'))
formatted_response = (
f"{response}\n\n"
f"🕒 زمان پاسخ: {current_time.strftime('%Y-%m-%d %H:%M:%S')}"
)
await update.message.reply_text(formatted_response)
except Exception as e:
logger.error(f"Message handling error: {e}")
await update.message.reply_text(
"متأسفانه در پردازش پیام شما خطایی رخ داد. لطفاً دوباره تلاش کنید."
)
def main():
try:
global rag_system
rag_system = AdvancedHybridRAGSystem()
# Configure Telegram application
app = ApplicationBuilder().token(TELEGRAM_TOKEN).build()
app.add_handler(MessageHandler(
filters.TEXT & ~filters.COMMAND,
handle_message
))
# Add error handling and logging
logger.info("Advanced Hybrid RAG System is starting...")
app.run_polling(drop_pending_updates=True)
except Exception as e:
logger.critical(f"Application startup failed: {e}")
raise
if __name__ == '__main__':
main()