-
Notifications
You must be signed in to change notification settings - Fork 11
/
exprtk_american_option_binomial_model.cpp
146 lines (122 loc) · 7.34 KB
/
exprtk_american_option_binomial_model.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*
**************************************************************
* C++ Mathematical Expression Toolkit Library *
* *
* American Option Binomial Pricing Model *
* Author: Arash Partow (1999-2024) *
* URL: https://www.partow.net/programming/exprtk/index.html *
* *
* Copyright notice: *
* Free use of the Mathematical Expression Toolkit Library is *
* permitted under the guidelines and in accordance with the *
* most current version of the MIT License. *
* https://www.opensource.org/licenses/MIT *
* SPDX-License-Identifier: MIT *
* *
**************************************************************
*/
#include <cstdio>
#include <string>
#include "exprtk.hpp"
template <typename T>
void american_option_binomial_option_pricing_model()
{
typedef exprtk::symbol_table<T> symbol_table_t;
typedef exprtk::expression<T> expression_t;
typedef exprtk::parser<T> parser_t;
const std::string american_option_binomial_model_program =
" var dt := t / n; "
" var z := exp(r * dt); "
" var z_inv := 1 / z; "
" var u := exp(v * sqrt(dt)); "
" var u_inv := 1 / u; "
" var p_up := (z - u_inv) / (u - u_inv); "
" var p_down := 1 - p_up; "
" var discount := exp(-r * dt); "
" "
" var option_price[n + 1] := {0}; "
" "
" for (var i := 0; i <= n; i += 1) "
" { "
" var base_price := s * u^(n - 2i); "
" option_price[i] := "
" switch "
" { "
" case callput_flag == 'call' : max(base_price - k, 0); "
" case callput_flag == 'put' : max(k - base_price, 0); "
" }; "
" }; "
" "
" for (var j := n - 1; j >= 0; j -= 1) "
" { "
" for (var i := 0; i <= j; i += 1) "
" { "
" option_price[i] := discount * "
" (p_up * option_price[i] + p_down * option_price[i + 1]); "
" var base_price := s * u^(j - 2i); "
" var exercise_price := "
" switch "
" { "
" case callput_flag == 'call' : base_price - k; "
" case callput_flag == 'put' : k - base_price; "
" }; "
" "
" option_price[i] := max(option_price[i], exercise_price); "
" } "
" }; "
" "
" option_price[0]; ";
T s = T( 100.00); // Spot / Stock / Underlying / Base price
T k = T( 110.00); // Strike price
T v = T( 0.30); // Volatility
T t = T( 2.22); // Years to maturity
T r = T( 0.05); // Risk free rate
T n = T(1000.00); // Number of time steps
std::string callput_flag;
symbol_table_t symbol_table(symbol_table_t::e_immutable);
symbol_table.add_variable("s", s);
symbol_table.add_variable("k", k);
symbol_table.add_variable("t", t);
symbol_table.add_variable("r", r);
symbol_table.add_variable("v", v);
symbol_table.add_constant("n", n);
symbol_table.add_stringvar("callput_flag",callput_flag);
expression_t expression;
expression.register_symbol_table(symbol_table);
parser_t parser;
parser.compile(american_option_binomial_model_program,expression);
callput_flag = "call";
const T binomial_call_option_price = expression.value();
callput_flag = "put";
const T binomial_put_option_price = expression.value();
printf("American BinomialPrice(call, %5.3f, %5.3f, %5.3f, %5.3f, %5.3f) = %10.6f\n",
s, k, t, r, v,
binomial_call_option_price);
printf("American BinomialPrice(put , %5.3f, %5.3f, %5.3f, %5.3f, %5.3f) = %10.6f\n",
s, k, t, r, v,
binomial_put_option_price);
// American option put-call 'parity': s - k < call - put < s - k * e^(-rt)
const T callput_diff = (binomial_call_option_price - binomial_put_option_price);
const T basestrike_diff = s - k;
const T basepv_diff = s - k * std::exp(-r * t);
const bool put_call_parity = (basestrike_diff < callput_diff) &&
(callput_diff < basepv_diff ) ;
const T call_price_r0 = binomial_put_option_price + basestrike_diff;
const T call_price_r1 = binomial_put_option_price + basepv_diff;
const T put_price_r0 = binomial_call_option_price - basepv_diff;
const T put_price_r1 = binomial_call_option_price - basestrike_diff;
printf("Put-Call parity: %s\n", put_call_parity ? "True" : "False");
printf("Call price range: %7.4f < %7.4f < %7.4f\n",
call_price_r0,
binomial_call_option_price,
call_price_r1);
printf("Put price range: %7.4f < %7.4f < %7.4f\n",
put_price_r0,
binomial_put_option_price,
put_price_r1);
}
int main()
{
american_option_binomial_option_pricing_model<double>();
return 0;
}