-
Notifications
You must be signed in to change notification settings - Fork 2
/
GaloisProto.cpp
252 lines (189 loc) · 6.77 KB
/
GaloisProto.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*
*********************************************************************
* *
* Galois Field Arithmetic Library *
* Prototype: Galois Field Prototype *
* Version: 0.0.1 *
* Author: Arash Partow - 2000 *
* URL: http://www.partow.net/projects/galois/index.html *
* *
* Copyright Notice: *
* Free use of this library is permitted under the guidelines and *
* in accordance with the most current version of the Common Public *
* License. *
* http://www.opensource.org/licenses/cpl.php *
* *
*********************************************************************
*/
#include <iostream>
#include <string>
#include <stdlib.h>
#include <stdio.h>
#include "GaloisField.h"
#include "GaloisFieldElement.h"
#include "GaloisFieldPolynomial.h"
/*
p(x) = 1x^8+1x^7+0x^6+0x^5+0x^4+0x^3+1x^2+1x^1+1x^0
1 1 0 0 0 0 1 1 1
*/
unsigned int poly[9] = {1,1,1,0,0,0,0,1,1};
/*
A Galois Field of type GF(2^8)
*/
galois::GaloisField gf(8,poly);
galois::GaloisFieldElement gfe[10] = {
galois::GaloisFieldElement(&gf, 1),
galois::GaloisFieldElement(&gf, 2),
galois::GaloisFieldElement(&gf, 3),
galois::GaloisFieldElement(&gf, 4),
galois::GaloisFieldElement(&gf, 5),
galois::GaloisFieldElement(&gf, 6),
galois::GaloisFieldElement(&gf, 7),
galois::GaloisFieldElement(&gf, 8),
galois::GaloisFieldElement(&gf, 9),
galois::GaloisFieldElement(&gf,10)
};
galois::GaloisFieldElement gfe2[6] = {
galois::GaloisFieldElement(&gf, 6),
galois::GaloisFieldElement(&gf, 5),
galois::GaloisFieldElement(&gf, 4),
galois::GaloisFieldElement(&gf, 3),
galois::GaloisFieldElement(&gf, 2),
galois::GaloisFieldElement(&gf, 1)
};
galois::GaloisFieldElement gfe3[5] = {
galois::GaloisFieldElement(&gf, 13),
galois::GaloisFieldElement(&gf, 11),
galois::GaloisFieldElement(&gf, 7),
galois::GaloisFieldElement(&gf, 3),
galois::GaloisFieldElement(&gf, 2)
};
galois::GaloisFieldElement gfez[3] = {
galois::GaloisFieldElement(&gf, 0),
galois::GaloisFieldElement(&gf, 0),
galois::GaloisFieldElement(&gf, 1)
};
bool addsub_test()
{
galois::GaloisFieldPolynomial gfp1(&gf,9,gfe);
galois::GaloisFieldPolynomial gfp2(&gf,5,gfe2);
galois::GaloisFieldPolynomial gfp3(&gf,0);
gfp3 = gfp1 + gfp2;
gfp3 = gfp3 - gfp2;
if (gfp1 != gfp3)
{
std::cout << "Add-Sub ERROR!" << std::endl;
std::cout << "gfp1(x) " << gfp1 << std::endl;
std::cout << "gfp2(x) " << gfp2 << std::endl;
std::cout << "gfp3(x) " << gfp3 << std::endl;
return false;
}
return true;
}
bool muldiv_test()
{
galois::GaloisFieldPolynomial gfp1(&gf,9,gfe);
galois::GaloisFieldPolynomial gfp2(&gf,5,gfe2);
galois::GaloisFieldPolynomial gfp3(&gf,0);
gfp3 = gfp1 * gfp2;
gfp3 = gfp3 / gfp2;
if (gfp1 != gfp3)
{
std::cout << "Mul-Div ERROR!" << std::endl;
std::cout << "gfp1(x) " << gfp1 << std::endl;
std::cout << "gfp2(x) " << gfp2 << std::endl;
std::cout << "gfp3(x) " << gfp3 << std::endl;
return false;
}
return true;
}
bool divmod_test()
{
galois::GaloisFieldPolynomial gfp1(&gf,9,gfe);
galois::GaloisFieldPolynomial gfp2(&gf,5,gfe2);
galois::GaloisFieldPolynomial gfp3(&gf,4,gfe3);
galois::GaloisFieldPolynomial gfp4(&gf,0);
gfp4 = (gfp1 * gfp2) + gfp3;
if(
(gfp4 % gfp1 != gfp3) ||
(gfp4 % gfp2 != gfp3)
)
{
std::cout << "Div-Mod ERROR!" << std::endl;
std::cout << "gfp1(x) " << gfp1 << std::endl;
std::cout << "gfp2(x) " << gfp2 << std::endl;
std::cout << "gfp3(x) " << gfp3 << std::endl;
std::cout << "gfp4(x) " << gfp3 << std::endl;
return false;
}
return true;
}
bool mod_zmodetest()
{
galois::GaloisFieldPolynomial gfp1(&gf,9,gfe);
galois::GaloisFieldPolynomial gfp2(&gf,2,gfez); // p(x) = x^2
if((gfp1 % gfp2) != (gfp1 % 2))
{
std::cout << "Mod-ZMod ERROR!" << std::endl;
std::cout << "gfp1(x) " << gfp1 << std::endl;
std::cout << "gfp2(x) " << gfp2 << std::endl;
return false;
}
return true;
}
bool exp_test()
{
galois::GaloisFieldPolynomial gfp1(&gf,9,gfe);
galois::GaloisFieldPolynomial gfp2(&gf,0);
gfp2 = gfp1 ^ 10;
for (unsigned int i = 0; i < 10; i++)
{
gfp2 = gfp2 / gfp1;
}
if(gfp2 != gfp1)
{
std::cout << "Exponentiation ERROR!" << std::endl;
std::cout << "gfp1(x) " << gfp1 << std::endl;
std::cout << "gfp2(x) " << gfp2 << std::endl;
return false;
}
return true;
}
bool shiftleft_test()
{
galois::GaloisFieldPolynomial gfp1(&gf,9,gfe);
galois::GaloisFieldPolynomial gfp2(&gf,0);
gfp2 = gfp1 << 10;
gfp2 = gfp2 >> 10;
if(gfp2 != gfp1)
{
std::cout << "Shift Left ERROR!" << std::endl;
std::cout << "gfp1(x) " << gfp1 << std::endl;
std::cout << "gfp2(x) " << gfp2 << std::endl;
return false;
}
return true;
}
int main(int argc, char *argv[])
{
unsigned int MAX = 25500;
for(unsigned int i = 0; i < MAX; i++)
{
if (!addsub_test())
break;
if (!muldiv_test())
break;
if (!divmod_test())
break;
if (!mod_zmodetest())
break;
if (!exp_test())
break;
if (!shiftleft_test())
break;
if (i % 100 == 0)
std::cout << i << " times" << std::endl;
}
exit(EXIT_SUCCESS);
return true;
}