-
Notifications
You must be signed in to change notification settings - Fork 14
/
optim_PhC_dqn.py
251 lines (191 loc) · 7.71 KB
/
optim_PhC_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
"""Deep Q learning (DQN) for optimizing Nanobeam photonic crystals (using OpenAI Gym)
#Renjie Li, December 2021, NOEL CUHKSZ.
"""
import sys
import gym
import math
import random
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple, deque
from itertools import count
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
import torchvision.transforms as T
import logging
from gym.envs.registration import register
torch.set_printoptions(precision=10)
logger = logging.getLogger(__name__)
# register the env with gym
register(
id='Fdtd-v0',
entry_point='envs:FdtdEnv',
max_episode_steps=500,
reward_threshold=75.0,
)
writer = SummaryWriter() # log the training process
# instantiate the fdtd env
env = gym.make('Fdtd-v0').unwrapped
# if GPU is to be used
print(torch.cuda.is_available())
print(torch.cuda.get_device_name(0))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# declare transition and experience replay
Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward'))
class ReplayMemory(object):
"""declare the replay buffer"""
def __init__(self, capacity):
self.memory = deque([], maxlen=capacity)
def push(self, *args):
"""Save a transition"""
self.memory.append(Transition(*args))
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
# set up the neural network
# create a class for the DQN's policy MLP
class Net(nn.Module):
def __init__(self, num_actions):
super(Net, self).__init__()
self.fc1 = nn.Linear(3, 50) # just FC, no CNN
self.fc2 = nn.Linear(50, 50)
# self.fc3 = nn.Linear(50, 50)
self.fc3 = nn.Linear(50, num_actions)
def forward(self, x):
x = x.to(device)
# print(x.shape)
x = x.view(-1, 3)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
# x = F.relu(self.fc3(x))
x = self.fc3(x)
return x
env.reset()
# set up the training
BATCH_SIZE = 64
GAMMA = 0.999
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 200
TARGET_UPDATE = 5
UPDATE_FREQ = 4
# get number of actions from gym action space
n_actions = env.action_space.n
policy_net = Net(n_actions).to(device) # instantiate the policy network
target_net = Net(n_actions).to(device)
target_net.load_state_dict(policy_net.state_dict())
target_net.eval()
optimizer = optim.RMSprop(policy_net.parameters(), lr=0.00025, alpha=0.95, momentum=0.95) # initialize the optimizer, change learning rate?
# optimizer = optim.Adam(policy_net.parameters(), lr=0.00001)
memory = ReplayMemory(500) # instantiate the replay buffer
steps_done = 0 # counter for steps taken
def select_action(state):
"""selects an action accordingly to an epsilon greedy policy"""
global steps_done
sample = random.random() # generate random number
eps_threshold = EPS_END + (EPS_START - EPS_END) * math.exp(-1. * steps_done / EPS_DECAY) # expotentially decaying eps
steps_done += 1
if sample > eps_threshold:
with torch.no_grad():
print(policy_net(state))
print(policy_net(state).max(1)[1])
return policy_net(state).max(1)[1].view(1, 1) # Pick action with the largest expected reward (argmax)
else:
return torch.tensor([[random.randrange(n_actions)]], device=device, dtype=torch.long) # pick random action
# define the optimization (RL) process, which computes V, Q and the loss
def optimize_model():
if len(memory) < BATCH_SIZE:
return
print('optimizing...')
transitions = memory.sample(BATCH_SIZE) # sample transitions from the replay buffer
batch = Transition(*zip(*transitions)) # transpose the batch
# compute a mask of non-final states and concatenate the batch elements
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)), device=device,
dtype=torch.bool)
non_final_next_states = torch.cat([s for s in batch.next_state if s is not None])
# state, action, and reward from replay buffer
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
# compute Q(s, a)
state_action_values = policy_net(state_batch).gather(1, action_batch)
# Compute V(s')
next_state_values = torch.zeros(BATCH_SIZE, device=device) # V is zero for final state
next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0].detach() # V' = max(Q')
# compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch # Q_expected = r + gamma*V'
# cost function
criterion = nn.SmoothL1Loss()
loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1)) # L = Q.actual - Q.expected
# optimize the MLP model
optimizer.zero_grad()
loss.backward()
for param in policy_net.parameters():
# clamp grad values to between -1 and 1
param.grad.data.clamp_(-1,1)
optimizer.step()
print(loss.item())
# main training loop
num_episodes = 500
max_episode_steps = 500
tempRew = -1000
lastScore = 0
maxScore = []
for i_episode in range(num_episodes):
# Initialize the environment and state
print('\nStarting episode No.{}'.format(i_episode+1))
state = env.reset()
state = torch.from_numpy(state)
for t in range(max_episode_steps):
print('\nStarting time step No.{}'.format(t + 1))
# Select and perform an action
action = select_action(state)
obs, score, done, _ = env.step(action.item())
# record the highest score, corresponding to the highest Q factor
if score > tempRew:
tempRew = score
# score = torch.tensor([score], device=device)
# calculate the reward
reward = score - lastScore
print(score, reward, obs)
reward = torch.tensor([reward], device=device)
# Observe new state
if not done:
next_state = torch.from_numpy(obs)
else:
next_state = None
if score >= env.spec.reward_threshold:
print('\nSolved! Episode: {}, Steps: {}, Current_state: {}, Current_reward: {}\n'.format(
i_episode, t, next_state, score))
break
# Store the transition in memory
memory.push(state, action, next_state, reward)
lastScore = score
# Move to the next state
state = next_state
# Perform one step of the optimization (on the policy network)
# don't need to train every step
if steps_done % UPDATE_FREQ == 0:
optimize_model()
writer.add_scalar('training/scores', score, steps_done)
if done:
break
print('\nlargest score so far: {}'.format(tempRew))
maxScore.append(tempRew)
writer.add_scalar('training/max_scores', tempRew, i_episode)
# Update the target network, copying all weights and biases in DQN
if i_episode % TARGET_UPDATE == 0:
print('updating target network...')
print(maxScore)
target_net.load_state_dict(policy_net.state_dict())
if score >= env.spec.reward_threshold:
print('Solved! Episode: {}, Current_state: {}, Current_reward: {}\n'.format(
i_episode, next_state, score))
break
print('Training Complete')
writer.close()