-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdebug.py
74 lines (65 loc) · 2.13 KB
/
debug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from icecream import install
install()
import torch
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from src.ppomario import PPOMario
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor, ModelSummary
from datetime import datetime
def main(world: int = 1, stage: int = 1, ckpt_path: str = None, use_ppg: bool = False):
if use_ppg:
run_name = f"PPOMario-PPG-{world}-{stage}"
ckpt_save_path = f"model/ppg/{world}-{stage}/"
else:
run_name = f"PPOMario-PPO-{world}-{stage}"
ckpt_save_path = f"model/ppo/{world}-{stage}/"
checkpoint_callback = ModelCheckpoint(
save_top_k=3,
monitor="avg_score",
mode="max",
dirpath=ckpt_save_path,
filename="ppomario-{avg_score:.2f}",
every_n_epochs=50,
save_last=True,
verbose=True,
)
model = PPOMario(
world=world,
stage=stage,
lr=2.5e-4,
lr_decay_ratio=0,
lr_decay_epoch=10000,
batch_epoch=10,
batch_size=512,
num_workers=4,
num_envs=8,
hidden_size=512,
steps_per_epoch=512,
val_episodes=3,
render=False,
use_ppg=use_ppg,
aux_batch_size=16,
aux_batch_epoch=6,
aux_interval=2,
)
wandb_logger = WandbLogger(name=run_name, offline=True)
trainer = pl.Trainer(
accelerator="gpu",
devices = 1 if torch.cuda.is_available() else None,
max_epochs=10000,
logger=wandb_logger,
default_root_dir=f"model/{world}-{stage}",
check_val_every_n_epoch=2 * model.batch_epoch,
auto_lr_find=True,
log_every_n_steps=20,
callbacks=[checkpoint_callback, LearningRateMonitor(logging_interval='epoch'), ModelSummary(max_depth=5)],
num_sanity_val_steps=0,
# enable_progress_bar=False,
reload_dataloaders_every_n_epochs=model.batch_epoch,
)
if ckpt_path is not None:
trainer.fit(model, ckpt_path=ckpt_path)
else:
trainer.fit(model)
if __name__ == "__main__":
main(world=1, stage=1, use_ppg=False)