-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppo_train.py
59 lines (52 loc) · 1.79 KB
/
ppo_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger
from src.ppomario import PPOMario
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor, ModelSummary
def main(world: int = 1, stage: int = 1, max_steps: int = 10000, ckpt_path: str = None, use_ppg: bool = False,):
run_name = f"PPOMario-PPO-{world}-{stage}"
ckpt_save_path = f"model/ppo/{world}-{stage}/"
model = PPOMario(
world=world,
stage=stage,
lam=0.999,
lr=2.5e-4,
batch_epoch=10,
batch_size=128,
num_workers=4,
num_envs=8,
hidden_size=512,
steps_per_epoch=512,
val_episodes=5,
render=True,
)
checkpoint_callback = ModelCheckpoint(
monitor="benchmark/avg_score",
mode="max",
save_top_k=3,
dirpath=ckpt_save_path,
filename="ppomario-{epoch}-{step}",
every_n_epochs=20 * model.batch_epoch,
save_last=True,
verbose=True,
)
wandb_logger = WandbLogger(name=run_name)
trainer = pl.Trainer(
accelerator="gpu",
devices = 1 if torch.cuda.is_available() else None,
max_steps=max_steps,
logger=wandb_logger,
default_root_dir=f"model/{world}-{stage}",
log_every_n_steps=100,
check_val_every_n_epoch=20 * model.batch_epoch,
reload_dataloaders_every_n_epochs=model.batch_epoch,
num_sanity_val_steps=0,
auto_lr_find=True,
callbacks=[checkpoint_callback, LearningRateMonitor(logging_interval='step'), ModelSummary(max_depth=5)],
)
if ckpt_path is not None:
trainer.fit(model, ckpt_path=ckpt_path)
else:
trainer.fit(model)
if __name__ == "__main__":
main(world=1, stage=3, max_steps=10000000)