-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiban.m
449 lines (401 loc) · 11.8 KB
/
diban.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
% 设置音频文件所在的文件夹路径
myFolder = 'E:\dsp大作业\data\底板敲击音'; % 替换为您音频文件夹的实际路径
% 检查文件夹是否确实存在
if ~isfolder(myFolder)
errorMessage = sprintf('Error: The following folder does not exist:\n%s', myFolder);
uiwait(warndlg(errorMessage));
return;
end
% 获取文件夹中所有.wav文件的列表
filePattern = fullfile(myFolder, '*.wav');
wavFiles = dir(filePattern);
%设置音频文件保存路径
savepath = 'E:\dsp大作业\picture\底板敲击音';
%%
%归一化截至角频率
cut_freq = cut_freq/fs*pi;
%设计低通滤波器
[b,a] = butter(4,cut_freq,'low');
%绘制滤波器的频率响应
figure(1);
freqz(b,a);
title('滤波器的频率响应');
%%
%循环读取文件夹中的所有.wav文件,仿照上面的代码计算频谱图,并画出处理前后的频谱图,且把全部处理后的频率特性保存到一个数组中
%这里的数组是一个二维数组,第一维表示文件序号,第二维表示频率序号,数组元素表示对应的幅度值
new_freq = [];
new_Y = [];
for k = 1:length(wavFiles)
baseFileName = wavFiles(k).name;
fullFileName = fullfile(myFolder, baseFileName);
fprintf(1, 'Now reading %s\n', fullFileName);
%读取音频文件
[y,fs] = audioread(fullFileName);
%做傅里叶变换,注意这里的y是复数,所以要取绝对值并且只取前一半
Y = abs(fft(y));
Y = Y(1:length(Y)/2);
%滤波
y1 = filter(b,a,y);
Y1 = abs(fft(y1));
Y1 = Y1(1:length(Y1)/2);
%画出滤波后的频谱图和时域图
figure(2);
subplot(2,1,1);
%绘制滤波后的时域图
plot(y1);
title('滤波后的时域图');
xlabel('时间');
ylabel('幅度');
subplot(2,1,2);
plot(Y1);
title('滤波后的频谱图');
xlabel('频率');
ylabel('幅度');
xlim([0,20000]);
% %保存图片
% saveas(gcf,fullfile(savepath,baseFileName(1:end-4)),'png');
%截断Y1到index_max处
Y1=Y1(1:index_max);
%把截断的Y1保存到new_H中
new_Y{k} = Y1;
end
%%
% 利用kmeans聚类new_Y{2}为34类
k = 34;
%转置new_Y{2}
new_Y{2} = new_Y{2}';
%利用kmeans函数聚类
[idx,C] = kmeans(new_Y{2},k);
%画出聚类后的中心点,画在一张图上
%找到k个中心点的在频率上的索引
new_Y{2} = new_Y{2}';
% 初始化一个向量来存储每个质心最近点的索引
nearestPoints = zeros(1, k);
% 对于每个质心,找到最近的点
for i = 1:k
% 遍历所有点,找到值最接近质心的点
minDistance = inf;
for j = 1:length(new_Y{2})
distance = abs(new_Y{2}(j) - C(i));
if distance < minDistance
minDistance = distance;
nearestPoints(i) = j;
end
end
end
%重新绘制频谱图,在index_Y2处的值为中心点的值,其余为0
Y2 = zeros(1,length(new_Y{2}));
for i = 1:k
Y2(nearestPoints(i)) = C(i);
end
%求出index_Y2对应的频率
freq_Y2 = nearestPoints*fs/length(new_Y{2});
%画出聚类后的频谱图
figure(4);
plot(Y2);
title('聚类后的频谱图');
xlabel('频率');
ylabel('幅度');
xlim([0,20000]);
%%
%对每个new_Y{i}进行三次独立的聚类,分别为count1,count2,count3类
%初始化一个二维数组,第一维表示文件序号,第二维表示聚类序号,数组元素表示对应的幅度值
new_Y21 = [];
new_Y22 = [];
new_Y23 = [];
%设置图片保存路径
savepath1 = 'E:\dsp大作业\picture\底板敲击音\聚类后的频谱图1';
savepath2 = 'E:\dsp大作业\picture\底板敲击音\聚类后的频谱图2';
savepath3 = 'E:\dsp大作业\picture\底板敲击音\聚类后的频谱图3';
for i = 1:length(new_Y)
%转置new_Y{i}
new_Y{i} = new_Y{i}';
%利用kmeans函数聚类
[idx,C] = kmeans(new_Y{i},count1);
%画出聚类后的中心点,画在一张图上
%找到count1个中心点的在频率上的索引
new_Y{i} = new_Y{i}';
% 初始化一个向量来存储每个质心最近点的索引
nearestPoints = zeros(1, count1);
% 对于每个质心,找到最近的点
for j = 1:count1
% 遍历所有点,找到值最接近质心的点
minDistance = inf;
for k = 1:length(new_Y{i})
distance = abs(new_Y{i}(k) - C(j));
if distance < minDistance
minDistance = distance;
nearestPoints(j) = k;
end
end
end
%重新绘制频谱图,在index_Y2处的值为中心点的值,其余为0
Y2 = zeros(1,length(new_Y{i}));
for j = 1:count1
Y2(nearestPoints(j)) = C(j);
end
%取出index_Y2对应的频率和幅度,保存到new_Y21中其中new_Y21{i}的前count1个元素为频率,后count1个元素为幅度
new_Y21{i} = zeros(1,2*count1);
for j = 1:count1
new_Y21{i}(j) = nearestPoints(j)*fs/length(new_Y{i});
new_Y21{i}(j+count1) = C(j);
end
%画出聚类前后的频谱图
figure(5);
subplot(2,1,1);
plot(new_Y{i});
title('聚类前的频谱图');
xlabel('频率');
ylabel('幅度');
xlim([0,20000]);
subplot(2,1,2);
plot(Y2);
title('聚类后的频谱图');
xlabel('频率');
ylabel('幅度');
xlim([0,20000]);
%保存图片
saveas(gcf,fullfile(savepath1,wavFiles(i).name(1:end-4)),'png');
end
for i = 1:length(new_Y)
%转置new_Y{i}
new_Y{i} = new_Y{i}';
%利用kmeans函数聚类
[idx,C] = kmeans(new_Y{i},count2);
%画出聚类后的中心点,画在一张图上
%找到count2个中心点的在频率上的索引
new_Y{i} = new_Y{i}';
% 初始化一个向量来存储每个质心最近点的索引
nearestPoints = zeros(1, count2);
% 对于每个质心,找到最近的点
for j = 1:count2
% 遍历所有点,找到值最接近质心的点
minDistance = inf;
for k = 1:length(new_Y{i})
distance = abs(new_Y{i}(k) - C(j));
if distance < minDistance
minDistance = distance;
nearestPoints(j) = k;
end
end
end
%重新绘制频谱图,在index_Y2处的值为中心点的值,其余为0
Y2 = zeros(1,length(new_Y{i}));
for j = 1:count2
Y2(nearestPoints(j)) = C(j);
end
%取出index_Y2对应的频率和幅度,保存到new_Y22中其中new_Y22{i}的前count2个元素为频率,后count2个元素为幅度
new_Y22{i} = zeros(1,2*count2);
for j = 1:count2
new_Y22{i}(j) = nearestPoints(j)*fs/length(new_Y{i});
new_Y22{i}(j+count2) = C(j);
end
%画出聚类前后的频谱图
figure(6);
subplot(2,1,1);
plot(new_Y{i});
title('聚类前的频谱图');
xlabel('频率');
ylabel('幅度');
xlim([0,20000]);
subplot(2,1,2);
plot(Y2);
title('聚类后的频谱图');
xlabel('频率');
ylabel('幅度');
xlim([0,20000]);
%保存图片
saveas(gcf,fullfile(savepath2,wavFiles(i).name(1:end-4)),'png');
end
for i = 1:length(new_Y)
%转置new_Y{i}
new_Y{i} = new_Y{i}';
%利用kmeans函数聚类
[idx,C] = kmeans(new_Y{i},count3);
%画出聚类后的中心点,画在一张图上
%找到count3个中心点的在频率上的索引
new_Y{i} = new_Y{i}';
% 初始化一个向量来存储每个质心最近点的索引
nearestPoints = zeros(1, count3);
% 对于每个质心,找到最近的点
for j = 1:count3
% 遍历所有点,找到值最接近质心的点
minDistance = inf;
for k = 1:length(new_Y{i})
distance = abs(new_Y{i}(k) - C(j));
if distance < minDistance
minDistance = distance;
nearestPoints(j) = k;
end
end
end
%重新绘制频谱图,在index_Y2处的值为中心点的值,其余为0
Y2 = zeros(1,length(new_Y{i}));
for j = 1:count3
Y2(nearestPoints(j)) = C(j);
end
%取出index_Y2对应的频率和幅度,保存到new_Y23中其中new_Y23{i}的前count3个元素为频率,后count3个元素为幅度
new_Y23{i} = zeros(1,2*count3);
for j = 1:count3
new_Y23{i}(j) = nearestPoints(j)*fs/length(new_Y{i});
new_Y23{i}(j+count3) = C(j);
end
%画出聚类前后的频谱图
figure(7);
subplot(2,1,1);
plot(new_Y{i});
title('聚类前的频谱图');
xlabel('频率');
ylabel('幅度');
xlim([0,20000]);
subplot(2,1,2);
plot(Y2);
title('聚类后的频谱图');
xlabel('频率');
ylabel('幅度');
xlim([0,20000]);
%保存图片
saveas(gcf,fullfile(savepath3,wavFiles(i).name(1:end-4)),'png');
end
%%
%把new_Y21,new_Y22,new_Y23添加到share.mat中
save('share.mat','new_Y21','new_Y22','new_Y23','-append');
%%
%定义x1和x2
x1 = 0;
x2 = 0;
%调用cut函数,截断b3.wav
[x1,x2] = cut(x);
%绘制截断后的频域图,注意只画出前半部分
X1 = abs(fft(x1));
X2 = abs(fft(x2));
figure(3);
subplot(2,1,1);
plot(X1(1:floor(length(X1)/2)));
title('截断后的频域图1');
xlabel('频率');
ylabel('幅度');
xlim([0,5000]);
subplot(2,1,2);
plot(X2(1:floor(length(X2)/2)));
title('截断后的频域图2');
xlabel('频率');
ylabel('幅度');
xlim([0,5000]);
%%
%定义x1_max和x2_max为x1和x2的最大值,并保存索引
x1_max = max(x1);
x2_max = max(x2);
%定义x1_max_index和x2_max_index为x1和x2的最大值的索引
x1_max_index = 0;
x2_max_index = 0;
%找到x1和x2的最大值的索引
for i = 1:length(x1)
if x1(i) == x1_max
x1_max_index = i;
break;
end
end
for i = 1:length(x2)
if x2(i) == x2_max
x2_max_index = i;
break;
end
end
%最大值以外的部分置零
x1_input = zeros(1,length(x1));
x2_input = zeros(1,length(x2));
%最大值索引处的值置为最大值
x1_input(x1_max_index) = x1_max;
x2_input(x2_max_index) = x2_max;
%画出x1_input1和x1_input2的时域图
figure(4);
subplot(2,1,1);
plot(x1_input);
title('x1_input的时域图');
xlabel('时间');
ylabel('幅度');
subplot(2,1,2);
plot(x2_input);
title('x2_input的时域图');
xlabel('时间');
ylabel('幅度');
%%
%画出x1_input1和x1_input2的频域图
X1_input = abs(fft(x1_input));
X2_input = abs(fft(x2_input));
figure(5);
subplot(2,1,1);
plot(X1_input(1:floor(length(X1_input)/2)));
title('x1_input的频域图');
xlabel('频率');
ylabel('幅度');
subplot(2,1,2);
plot(X2_input(1:floor(length(X2_input)/2)));
title('x2_input的频域图');
xlabel('频率');
ylabel('幅度');
%%
%定义x1_signal和x2_signal
x1_signal = X1 ;
x2_signal = X2 ;
%定义x1_freqs和x2_freqs,表示频率
x1_freqs = (0:length(x1_signal)-1)*fs/length(x1_signal);
x2_freqs = (0:length(x2_signal)-1)*fs/length(x2_signal);
%处理信号
x1_signal = processSignal(x1_signal, x1_freqs);
x2_signal = processSignal(x2_signal, x2_freqs);
%画出x1_signal和x2_signal的频域图
figure(6);
subplot(2,1,1);
plot(x1_signal);
title('x1_signal的频域图');
xlabel('频率');
ylabel('幅度');
xlim([0,5000]);
subplot(2,1,2);
plot(x2_signal);
title('x2_signal的频域图');
xlabel('频率');
ylabel('幅度');
xlim([0,5000]);
%%
%把上面的部分封装成函数,输入x,输出x1和x2
function [x1,x2] = cut(x)
threshold1 = 1e-7;
threshold2 = 0.08;
pointcut = 0;
point1 = 0;
point2 = 0;
point3 = 0;
for i = 1:length(x)
if abs(x(i)) < threshold1
point1 = i;
break;
end
end
for i = point1:length(x)
if abs(x(i)) > threshold2
for j = i:length(x)
if abs(x(j)) < threshold1
point2 = j;
break;
end
end
end
end
for i = point2:length(x)
if abs(x(i)) > threshold2
for j = i:length(x)
if abs(x(j)) < threshold1
point3 = j;
break;
end
end
end
end
pointcut = point2;
x1 = x(1:pointcut);
x2 = x(pointcut+1:length(x));
end
%%