diff --git a/docs/api/evals.md b/docs/api/evals.md
index 1157d03230..a53fc69df7 100644
--- a/docs/api/evals.md
+++ b/docs/api/evals.md
@@ -52,6 +52,16 @@ def run_relevance_eval(
Given a pandas dataframe containing queries and retrieved documents, classifies the relevance of each retrieved document to the corresponding query using an LLM.
+### Parameters
+
+* dataframe (pd.DataFrame): A pandas dataframe containing queries and retrieved documents.
+* query\_column\_name (str, optional): The name of the column containing the queries.
+* retrieved\_documents\_column\_name (str, optional): The name of the column containing the retrieved document data. Each entry in this column should be a list of dictionaries containing metadata about the retrieved documents.
+
+### Returns
+
+* evaluations (List\[List\[str])]: A list of relevant and not relevant classifications. The "shape" of the list should mirror the "shape" of the retrieved documents column, in the sense that it has the same length as the input dataframe and each sub-list has the same length as the corresponding list in the retrieved documents column. The values in the sub-lists are either booleans or None in the case where the LLM output could not be parsed.
+
**\[**[**source**](https://github.com/Arize-ai/phoenix/blob/main/src/phoenix/experimental/evals/functions/binary.py)**]**
## phoenix.experimental.evals.llm\_generate
@@ -65,4 +75,17 @@ def llm_generate(
) -> List[str]
```
+Generates a text using a template using an LLM. This function is useful if you want to generate synthetic data, such as irrelevant responses
+
+### Parameters
+
+* **dataframe (pandas.DataFrame)**: A pandas dataframe in which each row represents a record to be used as in input to the template. All template variable names must appear as column names in the dataframe (extra columns unrelated to the template are permitted).
+* **template (Union\[PromptTemplate, str])**: The prompt template as either an instance of PromptTemplate or a string. If the latter, the variable names should be surrounded by curly braces so that a call to `format` can be made to substitute variable values.
+* **model (BaseEvalModel)**: An LLM model class.
+* **system\_instruction (Optional\[str], optional):** An optional system message.
+
+### Returns
+
+* **generations (List\[Optional\[str]])**: A list of strings representing the output of the model for each record
+
**\[**[**source**](https://github.com/Arize-ai/phoenix/blob/main/src/phoenix/experimental/evals/functions/generate.py)**]**
diff --git a/docs/tutorials/notebooks.md b/docs/tutorials/notebooks.md
index 27342e1c77..e37b084679 100644
--- a/docs/tutorials/notebooks.md
+++ b/docs/tutorials/notebooks.md
@@ -6,18 +6,60 @@ description: >-
# Notebooks
-## Notebooks
-
-| Title | Topics | Links |
-| -------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| Tracing LLM Applications (LlamaIndex) |
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/tracing/llama\_index\_tracing\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/tracing/llama\_index\_tracing\_tutorial.ipynb) |
-| Tracing LLM Applications (LangChain) | | [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/tracing/langchain\_tracing\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/tracing/langchain\_tracing\_tutorial.ipynb) |
-| Evaluating and Improving Search and Retrieval Applications (LlamaIndex) | | [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/llama\_index\_search\_and\_retrieval\_tutorial.ipynb) |
-| Evaluating and Improving Search and Retrieval Applications (LangChain, Pinecone) | | [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/langchain\_pinecone\_search\_and\_retrieval\_tutorial.ipynb) |
-| Active Learning for a Drifting Image Classification Model | - image classification
- data export
- fine-tuning
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/image\_classification\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/image\_classification\_tutorial.ipynb) |
-| Running Phoenix Example Datasets | | [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/example\_datasets.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/example\_datasets.ipynb) |
-| Collect Chats with GPT | | [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/llm\_generative\_gpt\_4.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/llm\_generative\_gpt\_4.ipynb) |
-| Root-Cause Analysis for a Drifting Sentiment Classification Model | - NLP
- sentiment classification
- root-cause analysis
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/sentiment\_classification\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/sentiment\_classification\_tutorial.ipynb) |
-| Find Clusters, Export, and Explore with GPT | | [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/find\_cluster\_export\_and\_explore\_with\_gpt.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/find\_cluster\_export\_and\_explore\_with\_gpt.ipynb) |
-| Troubleshooting an LLM Summarization Task | | [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/llm\_summarization\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/llm\_summarization\_tutorial.ipynb) |
-| Detecting Fraud with Tabular Embeddings | - tabular data
- anomaly detection
- data export
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/credit\_card\_fraud\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/credit\_card\_fraud\_tutorial.ipynb) |
+## LLM Traces
+
+Trace through the execution of your LLM application to understand its internal structure and to troubleshoot issues with retrieval, tool execution, LLM calls, and more.
+
+| Title | Topics | Links |
+| ---------------------------------------------------------------- | -------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| Tracing and Evaluating a LlamaIndex + OpenAI RAG Application | - LlamaIndex
- OpenAI
- retrieval-augmented generation
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/tracing/llama\_index\_tracing\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/tracing/llama\_index\_tracing\_tutorial.ipynb) |
+| Tracing and Evaluating a LlamaIndex OpenAI Agent | - LlamaIndex
- OpenAI
- agents
- function calling
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/tracing/llama\_index\_openai\_agent\_tracing\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/tracing/llama\_index\_openai\_agent\_tracing\_tutorial.ipynb) |
+| Tracing and Evaluating a LangChain + OpenAI RAG Application | - LangChain
- OpenAI
- retrieval-augmented generation
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/tracing/langchain\_tracing\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/tracing/langchain\_tracing\_tutorial.ipynb) |
+| Tracing and Evaluating a LangChain Agent | - LangChain
- OpenAI
- agents
- function calling
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/tracing/langchain\_agent\_tracing\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/tracing/langchain\_agent\_tracing\_tutorial.ipynb) |
+| Tracing and Evaluating a LangChain + Vertex AI RAG Application | - LangChain
- Vertex AI
- retrieval-augmented generation
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/tracing/langchain\_vertex\_ai\_tracing\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/tracing/langchain\_vertex\_ai\_tracing\_tutorial.ipynb) |
+| Tracing and Evaluating a LangChain + Google PaLM RAG Application | - LangChain
- Google PaLM
- retrieval-augmented generation
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/tracing/langchain\_google\_palm\_tracing\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/tracing/langchain\_google\_palm\_tracing\_tutorial.ipynb) |
+
+## LLM Evals
+
+Leverage the power of large language models to evaluate your generative model or application for hallucinations, toxicity, relevance of retrieved documents, and more.
+
+| Title | Topics | Links |
+| ------------------------------------------- | ------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| Evaluating Hallucinations | | [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate\_hallucination\_classifications.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate\_hallucination\_classifications.ipynb) |
+| Evaluating Toxicity | | [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate\_toxicity\_classifications.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate\_toxicity\_classifications.ipynb) |
+| Evaluating Relevance of Retrieved Documents | | [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate\_relevance\_classifications.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate\_relevance\_classifications.ipynb) |
+| Evaluating Question-Answering | | [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate\_QA\_classifications.ipynb) [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate\_QA\_classifications.ipynb) |
+| Evaluating Summarization | | [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate\_summarization\_classifications.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate\_summarization\_classifications.ipynb) |
+| Evaluating Code Readability | | [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate\_code\_readability\_classifications.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/evals/evaluate\_code\_readability\_classifications.ipynb) |
+
+## Retrieval-Augmented Generation Analysis
+
+Visualize your generative application's retrieval process to surface failed retrievals and to find topics not addressed by your knowledge base.
+
+| Title | Topics | Links |
+| ---------------------------------------------------------- | ----------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| Evaluating and Improving Search and Retrieval Applications | - LlamaIndex
- retrieval-augmented generation
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/llama\_index\_search\_and\_retrieval\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/llama\_index\_search\_and\_retrieval\_tutorial.ipynb) |
+| Evaluating and Improving Search and Retrieval Applications | - LlamaIndex
- Milvus
- retrieval-augmented generation
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/milvus\_llamaindex\_search\_and\_retrieval\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/milvus\_llamaindex\_search\_and\_retrieval\_tutorial.ipynb) |
+| Evaluating and Improving Search and Retrieval Applications | - LangChain
- Pinecone
- retrieval-augmented generation
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/langchain\_pinecone\_search\_and\_retrieval\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/langchain\_pinecone\_search\_and\_retrieval\_tutorial.ipynb) |
+
+## Embedding Analysis
+
+Explore lower-dimensional representations of your embedding data to identify clusters of high-drift and performance degradation.
+
+| Title | Topics | Links |
+| ----------------------------------------------------------------- | ---------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| Active Learning for a Drifting Image Classification Model | - image classification
- fine-tuning
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/image\_classification\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/image\_classification\_tutorial.ipynb) |
+| Root-Cause Analysis for a Drifting Sentiment Classification Model | - NLP
- sentiment classification
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/sentiment\_classification\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/sentiment\_classification\_tutorial.ipynb) |
+| Troubleshooting an LLM Summarization Task | | [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/llm\_summarization\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/llm\_summarization\_tutorial.ipynb) |
+| Collect Chats with GPT | | [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/llm\_generative\_gpt\_4.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/llm\_generative\_gpt\_4.ipynb) |
+| Find Clusters, Export, and Explore with GPT | - LLMs
- exploratory data analysis
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/find\_cluster\_export\_and\_explore\_with\_gpt.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/find\_cluster\_export\_and\_explore\_with\_gpt.ipynb) |
+
+## Structured Data Analysis
+
+Statistically analyze your structured data to perform A/B analysis, temporal drift analysis, and more.
+
+
+
+| Title | Topics | Links |
+| --------------------------------------- | -------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| Detecting Fraud with Tabular Embeddings | - tabular data
- anomaly detection
| [](https://colab.research.google.com/github/Arize-ai/phoenix/blob/main/tutorials/credit\_card\_fraud\_tutorial.ipynb) [](https://github.com/Arize-ai/phoenix/blob/main/tutorials/credit\_card\_fraud\_tutorial.ipynb) |