Skip to content

Latest commit

 

History

History
29 lines (21 loc) · 1.3 KB

README.md

File metadata and controls

29 lines (21 loc) · 1.3 KB

Sampling Assignment

This assignment involves the following steps and tasks:

Step 1: Download the dataset

Download the dataset from the provided link.

Step 2: Convert the dataset into a balanced class dataset

Transform the dataset into a balanced class dataset, ensuring an equal representation of different classes.

Step 3: Applying 5 Models using Pycaret

Use the Pycaret library to apply the following five models to the dataset:

  1. Random Forest Classifier
  2. Extra Trees Classifier
  3. Gradient Boosting Classifier
  4. Decision Tree Classifier
  5. Ada Boost Classifier

Sampling Techniques and Model Performance

The table below shows the performance of the five models using different sampling techniques:

Sampling Technique Random Forest Extra Trees Gradient Boosting Decision Tree Ada Boost
Simple Random 1.000 1.000 1.000 1.000 1.000
Systematic 1.000 1.000 0.997 0.981 1.000
Stratified 1.000 1.000 1.000 0.994 1.000
Cluster 0.780 0.841 0.871 0.738 0.864