forked from gzr2017/ImageProcessing100Wen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
answer_72.py
134 lines (102 loc) · 2.71 KB
/
answer_72.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import cv2
import numpy as np
import matplotlib.pyplot as plt
# BGR -> HSV
def BGR2HSV(_img):
img = _img.copy() / 255.
hsv = np.zeros_like(img, dtype=np.float32)
# get max and min
max_v = np.max(img, axis=2).copy()
min_v = np.min(img, axis=2).copy()
min_arg = np.argmin(img, axis=2)
# H
hsv[..., 0][np.where(max_v == min_v)]= 0
## if min == B
ind = np.where(min_arg == 0)
hsv[..., 0][ind] = 60 * (img[..., 1][ind] - img[..., 2][ind]) / (max_v[ind] - min_v[ind]) + 60
## if min == R
ind = np.where(min_arg == 2)
hsv[..., 0][ind] = 60 * (img[..., 0][ind] - img[..., 1][ind]) / (max_v[ind] - min_v[ind]) + 180
## if min == G
ind = np.where(min_arg == 1)
hsv[..., 0][ind] = 60 * (img[..., 2][ind] - img[..., 0][ind]) / (max_v[ind] - min_v[ind]) + 300
# S
hsv[..., 1] = max_v.copy() - min_v.copy()
# V
hsv[..., 2] = max_v.copy()
return hsv
# make mask
def get_mask(hsv):
mask = np.zeros_like(hsv[..., 0])
#mask[np.where((hsv > 180) & (hsv[0] < 260))] = 255
mask[np.logical_and((hsv[..., 0] > 180), (hsv[..., 0] < 260))] = 1
return mask
# masking
def masking(img, mask):
mask = 1 - mask
out = img.copy()
# mask [h, w] -> [h, w, channel]
mask = np.tile(mask, [3, 1, 1]).transpose([1, 2, 0])
out *= mask
return out
# Erosion
def Erode(img, Erode_time=1):
H, W = img.shape
out = img.copy()
# kernel
MF = np.array(((0, 1, 0),
(1, 0, 1),
(0, 1, 0)), dtype=np.int)
# each erode
for i in range(Erode_time):
tmp = np.pad(out, (1, 1), 'edge')
# erode
for y in range(1, H + 1):
for x in range(1, W + 1):
if np.sum(MF * tmp[y - 1 : y + 2 , x - 1 : x + 2]) < 1 * 4:
out[y - 1, x - 1] = 0
return out
# Dilation
def Dilate(img, Dil_time=1):
H, W = img.shape
# kernel
MF = np.array(((0, 1, 0),
(1, 0, 1),
(0, 1, 0)), dtype=np.int)
# each dilate time
out = img.copy()
for i in range(Dil_time):
tmp = np.pad(out, (1, 1), 'edge')
for y in range(1, H + 1):
for x in range(1, W + 1):
if np.sum(MF * tmp[y - 1 : y + 2, x - 1 : x + 2]) >= 1:
out[y - 1, x - 1] = 1
return out
# Opening morphology
def Morphology_Opening(img, time=1):
out = Erode(img, Erode_time=time)
out = Dilate(out, Dil_time=time)
return out
# Closing morphology
def Morphology_Closing(img, time=1):
out = Dilate(img, Dil_time=time)
out = Erode(out, Erode_time=time)
return out
# Read image
img = cv2.imread("imori.jpg").astype(np.float32)
# RGB > HSV
hsv = BGR2HSV(img / 255.)
# color tracking
mask = get_mask(hsv)
# closing
mask = Morphology_Closing(mask, time=5)
# opening
mask = Morphology_Opening(mask, time=5)
# masking
out = masking(img, mask)
out = out.astype(np.uint8)
# Save result
cv2.imwrite("out.jpg", out)
cv2.imshow("result", out)
cv2.waitKey(0)
cv2.destroyAllWindows()