forked from gzr2017/ImageProcessing100Wen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
answer_77.py
50 lines (37 loc) · 1.03 KB
/
answer_77.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Gabor
def Gabor_filter(K_size=111, Sigma=10, Gamma=1.2, Lambda=10, Psi=0, angle=0):
# get half size
d = K_size // 2
# prepare kernel
gabor = np.zeros((K_size, K_size), dtype=np.float32)
# each value
for y in range(K_size):
for x in range(K_size):
# distance from center
px = x - d
py = y - d
# degree -> radian
theta = angle / 180. * np.pi
# get kernel x
_x = np.cos(theta) * px + np.sin(theta) * py
# get kernel y
_y = -np.sin(theta) * px + np.cos(theta) * py
# fill kernel
gabor[y, x] = np.exp(-(_x**2 + Gamma**2 * _y**2) / (2 * Sigma**2)) * np.cos(2*np.pi*_x/Lambda + Psi)
# kernel normalization
gabor /= np.sum(np.abs(gabor))
return gabor
# get gabor kernel
gabor = Gabor_filter(K_size=111, Sigma=10, Gamma=1.2, Lambda=10, Psi=0, angle=0)
# Visualize
# normalize to [0, 255]
out = gabor - np.min(gabor)
out /= np.max(out)
out *= 255
out = out.astype(np.uint8)
cv2.imwrite("out.jpg", out)
cv2.imshow("result", out)
cv2.waitKey(0)