-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProject1_Q2(c)_Alishbah_Fahad_1001924185.py
226 lines (164 loc) · 5.89 KB
/
Project1_Q2(c)_Alishbah_Fahad_1001924185.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/env python
# coding: utf-8
# # Q2(c)
# ### Importing Libraries and Data
# In[1]:
import numpy as np
import math
from math import sqrt
from math import exp
from math import pi
def clean_data(line):
return line.replace('(', '').replace(')', '').replace(' ', '').strip().split(',')
def fetch_data(filename):
with open(filename, 'r') as f:
input_data = f.readlines()
clean_input = list(map(clean_data, input_data))
f.close()
return clean_input
def readFile(dataset_path):
input_data = fetch_data(dataset_path)
input_np = np.array(input_data)
return input_np
training = r"C:\Users\alish\OneDrive\Documents\Alishbah\CSE6363_Machine Learning\Project-1\axf4185_project_1\dataset\Program Data.txt"
Training_Data = readFile(training)
print("Training Data:")
print(Training_Data)
# ### Replacing 'W' and 'M' to '1' and '0' respectively
# In[2]:
for i in Training_Data:
if i[3]=='W':
i[3]=i[3].replace('W','1')
i[3]=int(i[3])
else:
i[3]=i[3].replace('M','0')
i[3]=int(i[3])
Training_Data=Training_Data.astype(float)
# ### Split a dataset into k folds
# In[3]:
from random import randrange
def cross_validation_split(dataset, n_folds):
dataset_split = list()
dataset_copy = list(dataset)
fold_size = int(len(dataset) / n_folds)
for i in range(n_folds):
fold = list()
while len(fold) < fold_size:
index = randrange(len(dataset_copy))
fold.append(dataset_copy.pop(index))
dataset_split.append(fold)
return dataset_split
# ### Calculate accuracy percentage
# In[4]:
def accuracy_metric(actual, predicted):
correct = 0
for i in range(len(actual)):
if actual[i] == predicted[i]:
correct += 1
return correct / float(len(actual)) * 100.0
# ### Evaluate an algorithm using a cross validation split
# In[5]:
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
folds = cross_validation_split(dataset, n_folds)
scores = list()
for fold in folds:
train_set = list(folds)
def remove_values_from_list(train_set, fold):
return [value for value in train_set if value != fold]
train_set = sum(train_set, [])
test_set = list()
for row in fold:
row_copy = list(row)
test_set.append(row_copy)
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
accuracy = accuracy_metric(actual, predicted)
scores.append(accuracy)
return scores
# ### Split Training data by class
# In[6]:
def separate_by_class(Trainingdata):
separated = dict()
for i in range(len(Trainingdata)):
vector = Trainingdata[i]
class_value = vector[-1]
if (class_value not in separated):
separated[class_value] = list()
separated[class_value].append(vector)
return separated
splitted_data = separate_by_class(Training_Data)
for label in splitted_data:
print(label)
for row in splitted_data[label]:
print(row)
# ### Split dataset by class then calculate statistics for each Feature
# In[7]:
# Calculating mean
def mean(numbers):
return sum(numbers)/float(len(numbers))
# Calculating the standard deviation
def stdev(numbers):
avg = mean(numbers)
variance = sum([(x-avg)**2 for x in numbers]) / float(len(numbers)-1)
return sqrt(variance)
# Calculating mean, stdev and count for each column in a dataset
def summarize_dataset(dataset):
summaries = [(mean(column), stdev(column), len(column)) for column in zip(*dataset)]
del(summaries[-1])
return summaries
# Split dataset by class then calculate statistics for each Feature
def summarize_by_class(dataset):
separated = separate_by_class(dataset)
summaries = dict()
for class_value, rows in separated.items():
summaries[class_value] = summarize_dataset(rows)
return summaries
summary = summarize_by_class(Training_Data)
for label in summary:
print(label)
for row in summary[label]:
print(row)
# ### Calculating probabilities of predicting each class for given Test Data
# In[8]:
# Calculating Gaussian probability distribution function
def calculate_probability(x, mean, stdev):
exponent = exp(-((x-mean)**2 / (2 * stdev**2 )))
return (1 / (sqrt(2 * pi) * stdev)) * exponent
# Calculating probabilities of predicting each class for given Test Data
def calculate_class_probabilities(summaries, row):
total_rows = sum([summaries[label][0][2] for label in summaries])
probabilities = dict()
for class_value, class_summaries in summaries.items():
probabilities[class_value] = summaries[class_value][0][2]/float(total_rows)
for i in range(len(class_summaries)):
mean, stdev, _ = class_summaries[i]
probabilities[class_value] *= calculate_probability(row[i], mean, stdev)
return probabilities
probabilities = calculate_class_probabilities(summary, Training_Data[0])
print(probabilities)
# ### Predict the class for given Test Data
# In[9]:
def predict(summaries, row):
probabilities = calculate_class_probabilities(summary, Training_Data[0])
best_label, best_prob = None, -1
for class_value, probability in probabilities.items():
if best_label is None or probability > best_prob:
best_prob = probability
best_label = class_value
return best_label
# ### Naive Bayes Algorithm
# In[10]:
def naive_bayes(train, test):
summarize = summarize_by_class(train)
predictions = list()
for row in test:
output = predict(summarize, row)
predictions.append(output)
return(predictions)
# ### Result
# In[11]:
n_folds = 120
scores = evaluate_algorithm(Training_Data, naive_bayes, n_folds)
Accuracy = (sum(scores)/float(len(scores)))
print('Accuracy: %.3f%%' % Accuracy)