-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_adapters.py
60 lines (48 loc) · 1.71 KB
/
run_adapters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from p_transformers.dataset import get_dataset
import json
from transformers import AutoTokenizer, AutoAdapterModel
from transformers import RobertaConfig, RobertaModelWithHeads
import numpy as np
from transformers import TrainingArguments, AdapterTrainer, EvalPrediction
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
model = AutoAdapterModel.from_pretrained("distilbert-base-uncased")
adapters_to_freeze = [int(i) for i in range(1, 11)]
with open("clinc/test_grouped.json", "r") as file:
g_data = json.load(file)
group_count = 0
for group_key, dset in g_data.items():
# creates a train/test datasets
dataset_name = "clinc"
dataset_label_num = len(dset["train"].keys())
train, test = get_dataset(tokenizer=tokenizer, dataset=dset)
print("data_load Completed")
group_count += 1
if group_count == 1:
break
# Add a new adapter
model.add_adapter("clinc")
# Add a matching classification head
model.add_classification_head("clinc", num_labels=15)
# Activate the adapter
model.train_adapter("clinc")
training_args = TrainingArguments(
learning_rate=1e-4,
num_train_epochs=1,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
logging_steps=200,
output_dir="./training_output",
overwrite_output_dir=True,
remove_unused_columns=False,
)
def compute_accuracy(p: EvalPrediction):
preds = np.argmax(p.predictions, axis=1)
return {"acc": (preds == p.label_ids).mean()}
trainer = AdapterTrainer(
model=model,
args=training_args,
train_dataset=train,
eval_dataset=test,
compute_metrics=compute_accuracy,
)
trainer.train()