-
Notifications
You must be signed in to change notification settings - Fork 6
/
t5_inter.py
625 lines (517 loc) · 23.4 KB
/
t5_inter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
from transformers import (
AdamW,
DataCollatorWithPadding,
HfArgumentParser,
T5Config,
T5ForConditionalGeneration,
T5Tokenizer,
Trainer,
TrainingArguments,
)
from iupac_dataset import IUPACDataset
from torch.utils.data import DataLoader
import os
import tempfile
import re
import pandas as pd
import numpy as np
from typing import Dict, Optional
from dataclasses import dataclass, field
import logging
import torch
from torch.nn.utils.rnn import pad_sequence
from torch.optim.lr_scheduler import LambdaLR
import os.path as pt
from model import Model
import torch.optim as optim
import torch.nn as nn
from tqdm import tqdm
from torch.autograd import Variable
MAXLEN=128
import os
os.environ["CUDA_VISIBLE_DEVICES"]="0"
@dataclass
class DatasetArguments:
dataset_dir: str = field(
metadata={"help": "Directory where dataset is locaed"}
)
iupac_vocab_fn: str = field(
metadata={"help": "File containing iupac sentencepiece model"}
)
smile_vocab_fn: str = field(
metadata={"help": "File containing smile sentencepiece model"}
)
dataset_filename: str = field(
default="iupacs_logp.txt",
metadata={"help": "Name of dataset file in dataset_dir"}
)
mask_probability: float = field(
default=0.15,
metadata={"help": "Fraction of tokens to mask"}
)
mean_span_length: int = field(
default=3,
metadata={"help": "Max contiguous span of tokens to mask"}
)
name_col: str = field(
default="Preferred",
metadata={"help": "Header of column that contains the names"}
)
prepend_target: bool = field(
default=True,
metadata={"help": "Prepend names with discretized targets?"}
)
target_col: str = field(
default="Log P",
metadata={"help": "Header of column that contains the target vals"}
)
dataset_filename: str = field(
default="iupacs_logp.txt",
metadata={"help": "Filename containing data"}
)
low_cutoff: float = field(
default=-0.4,
metadata={"help": "Cutoff between <low> and <med>"}
)
high_cutoff: float = field(
default=5.6,
metadata={"help": "Cutoff between <med> and <high>"}
)
@dataclass
class ModelArguments:
model_path: Optional[str] = field(
default=None,
metadata={"help": "Checkpoint to start training from"}
)
tokenizer_type: Optional[str] = field(
default="IUPAC",
metadata={"help": "How to tokenize chemicals (SMILES vs. IUPAC)"}
)
class T5IUPACTokenizer(T5Tokenizer):
def prepare_for_tokenization(self, text, is_split_into_words=False,
**kwargs):
return re.sub(" ", "_", text), kwargs
def _decode(self, *args, **kwargs):
# replace "_" with " ", except for the _ in extra_id_#
text = super()._decode(*args, **kwargs)
text = re.sub("extra_id_", "extraAidA", text)
text = re.sub("_", " ", text)
text = re.sub("extraAidA", "extra_id_", text)
return text
def sentinels(self, sentinel_ids):
return self.vocab_size - sentinel_ids - 1
def sentinel_mask(self, ids):
return ((self.vocab_size - self._extra_ids <= ids) &
(ids < self.vocab_size))
def _tokenize(self, text, sample=False):
#pieces = super()._tokenize(text, sample=sample)
pieces = super()._tokenize(text)
# sentencepiece adds a non-printing token at the start. Remove it
return pieces[1:]
class T5SMILESTokenizer(T5Tokenizer):
def __init__(
self,
vocab_file,
eos_token="</s>",
unk_token="<unk>",
pad_token="<pad>",
extra_ids=100,
additional_special_tokens=None,
**kwargs
):
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
additional_special_tokens = ["<extra_id_{}>".format(i)
for i in range(extra_ids)]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
extra_tokens = len(set(filter(lambda x: bool("extra_id" in x),
additional_special_tokens)))
if extra_tokens != extra_ids:
raise ValueError(
f"Both extra_ids ({extra_ids}) and additional_special_tokens "
"({additional_special_tokens}) are provided to T5Tokenizer. "
"In this case the additional_special_tokens must include the "
"extra_ids tokens"
)
super(T5Tokenizer, self).__init__(
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
extra_ids=extra_ids,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
self.vocab_file = vocab_file
self._extra_ids = extra_ids
with open(self.vocab_file, "r") as f:
self.vocab = {}
vocab_dict = list(map(str.strip, f.readlines()))
for i in vocab_dict:
self.vocab[i]=1
self.vocab = list(self.vocab.keys())
self.reverse_vocab = {w: i for i, w in enumerate(self.vocab)}
def sentinels(self, sentinel_ids):
return self.vocab_size - sentinel_ids - 1
def sentinel_mask(self, ids):
return ((self.vocab_size - self._extra_ids <= ids) &
(ids < self.vocab_size))
@property
def vocab_size(self):
return len(self.vocab) + self._extra_ids
def __getstate__(self):
state = self.__dict__.copy()
return state
def __setstate__(self, d):
self.__dict__ = d
def _tokenize(self, text):
tokens = []
i = 0
in_brackets = False
while i < len(text):
if text[i] in ["[", "<"]:
in_brackets = True
tokens.append("")
if in_brackets:
tokens[-1] += text[i]
else:
if text[i] in ["r", "l"]:
# handle Cl & Br
tokens[-1] += text[i]
else:
tokens.append(text[i])
if text[i] in ["]", ">"]:
in_brackets = False
i += 1
return tokens
def _convert_token_to_id(self, token):
if token.startswith("<extra_id_"):
match = re.match(r"<extra_id_(\d+)>", token)
num = int(match.group(1))
return self.vocab_size - num - 1
else:
return self.reverse_vocab[token]
def _convert_id_to_token(self, index):
if index < len(self.vocab):
token = self.vocab[index]
else:
token = "<extra_id_{}>".format(self.vocab_size - 1 - index)
return token
def convert_tokens_to_string(self, tokens):
return "".join(tokens)
def save_vocabulary(self, save_directory, filename_prefix):
raise NotImplementedError()
@dataclass
class T5Collator:
pad_token_id: int
def __call__(self, records):
# records is a list of dicts
batch = {}
padvals = {"input_ids": self.pad_token_id,
"smiles_ids":self.pad_token_id,
"attention_mask": 0,
"labels": -100}
for k in records[0]:
if k in padvals:
batch[k] = pad_sequence([torch.tensor(r[k]) for r in records],
batch_first=True,
padding_value=padvals[k])
else:
batch[k] = torch.tensor([r[k] for r in records])
return batch
def label_smoother(model_output, labels):
epsilon: float = 0.1
ignore_index: int = -100
logits = model_output["logits"] if isinstance(model_output, dict) else model_output[0]
log_probs = -nn.functional.log_softmax(logits, dim=-1)
if labels.dim() == log_probs.dim() - 1:
labels = labels.unsqueeze(-1)
padding_mask = labels.eq(ignore_index)
# In case the ignore_index is -100, the gather will fail, so we replace labels by 0. The padding_mask
# will ignore them in any case.
labels = torch.clamp(labels, min=0)
nll_loss = log_probs.gather(dim=-1, index=labels)
# works for fp16 input tensor too, by internally upcasting it to fp32
smoothed_loss = log_probs.sum(dim=-1, keepdim=True, dtype=torch.float32)
nll_loss.masked_fill_(padding_mask, 0.0)
smoothed_loss.masked_fill_(padding_mask, 0.0)
# Take the mean over the label dimensions, then divide by the number of active elements (i.e. not-padded):
num_active_elements = padding_mask.numel() - padding_mask.long().sum()
nll_loss = nll_loss.sum() / num_active_elements
smoothed_loss = smoothed_loss.sum() / (num_active_elements * log_probs.shape[-1])
return (1 - epsilon) * nll_loss + epsilon * smoothed_loss
def prepare_input(data,device):
"""
Prepares one :obj:`data` before feeding it to the model, be it a tensor or a nested list/dictionary of tensors.
"""
from collections.abc import Mapping
if isinstance(data, Mapping):
return type(data)({k: prepare_input(v,device) for k, v in data.items()})
elif isinstance(data, (tuple, list)):
return type(data)(prepare_input(v,device) for v in data)
elif isinstance(data, torch.Tensor):
kwargs = dict(device=device)
if data.dtype != torch.int64:
# NLP models inputs are int64 and those get adjusted to the right dtype of the
# embedding. Other models such as wav2vec2's inputs are already float and thus
# may need special handling to match the dtypes of the model
kwargs.update(dict(dtype=data.dtype()))
return data.to(**kwargs)
return data
def main():
torch.manual_seed(42)
logging.basicConfig(level=logging.INFO)
parser = HfArgumentParser((TrainingArguments,
DatasetArguments,
ModelArguments))
training_args, dataset_args, model_args = parser.parse_args_into_dataclasses()
smile_tokenizer_class = T5SMILESTokenizer
iupac_tokenizer_class = T5IUPACTokenizer
smile_tokenizer = smile_tokenizer_class(vocab_file=dataset_args.smile_vocab_fn)
iupac_tokenizer = iupac_tokenizer_class(vocab_file=dataset_args.iupac_vocab_fn)
# this hack is needed because huggingface doesn't make the tokenizer's
# special tokens actually special even if you pass them as
# additional_special_tokens to the tokenizer's __init__
# (see https://github.com/huggingface/transformers/issues/8999)
iupac_vocab_size = iupac_tokenizer.vocab_size
iupac_tokenizer.add_tokens(["<extra_id_{}>".format(i) for i in range(100)],
special_tokens=True)
msg = "extra_ids should already be in vocab"
assert iupac_tokenizer.vocab_size == iupac_vocab_size, msg
smile_vocab_size = smile_tokenizer.vocab_size
smile_tokenizer.add_tokens(["<extra_id_{}>".format(i) for i in range(100)],
special_tokens=True)
msg = "extra_ids should already be in vocab"
assert smile_tokenizer.vocab_size == smile_vocab_size, msg
smile_PAD_IDX = smile_tokenizer.pad_token_id
tokenizer = iupac_tokenizer
torch.save(tokenizer, pt.join("./","inter_iupac_tokenizer.pt"))
torch.save(smile_tokenizer, pt.join("./","inter_smile_tokenizer.pt"))
if model_args.model_path is None:
# t5-large uses these params:
# d_model=1024,
# d_ff=4096,
# num_layers=24,
# num_heads=16,
config = T5Config(decoder_start_token_id=tokenizer.pad_token_id)
model = T5ForConditionalGeneration(config)
else:
model = T5ForConditionalGeneration.from_pretrained(model_args.model_path)
D = 0
for p in model.parameters():
D += p.data.numel()
print("model dim:", D)
if model_args.model_path in ["t5-small", "t5-base", "t5-large",
"t5-3B", "t5-11B"]:
# if we're starting with a model pretrained on natural language,
# we need to truncate the vocab to our much smaller vocab.
# but first, we need to move the embeddings for
# sentinel tokens so they don't get truncated
old = model.get_input_embeddings().weight.data
# the extra_ids are not actually at the end of `old` --
# there are unused embeddings after (maybe for alignment?)
# get the actual size by tokenizing <extra_id_0> (the last token)
pretrained_tok = T5Tokenizer.from_pretrained(model_args.model_path)
old_size = pretrained_tok._convert_token_to_id("<extra_id_0>") + 1
old = old[:old_size]
embedding_dim = old.size()[1]
new_size = tokenizer.vocab_size
num_extras = tokenizer._extra_ids
new = torch.cat([old[:new_size - num_extras],
old[-num_extras:]], dim=0)
assert list(new.size()) == [new_size, embedding_dim]
new_embeddings = torch.nn.Embedding(num_embeddings=new_size,
embedding_dim=embedding_dim,
_weight=new)
model.set_input_embeddings(new_embeddings)
model.tie_weights()
dataset_kwargs = {
"dataset_dir": dataset_args.dataset_dir,
"dataset_filename": dataset_args.dataset_filename,
"tokenizer": tokenizer,
"smile_tokenizer":smile_tokenizer,
"max_length": MAXLEN,
"prepend_target": dataset_args.prepend_target,#控制是否将属性进行高中低的编码放入iupac的编码前
"target_col": dataset_args.target_col,
"name_col": dataset_args.name_col,
"dataset_filename": dataset_args.dataset_filename,
"low_cutoff": dataset_args.low_cutoff,
"high_cutoff": dataset_args.high_cutoff,
"mask_probability": dataset_args.mask_probability,
"mean_span_length": dataset_args.mean_span_length,
"smile_name_col":"Canonical<",
"return_target":True,#如果设置为否,那么就是label是input_id中的缺失片段,并以此label为预测目标,
#并且属性已经以高中低编码在了input_id中了,
#如果设置为真,那么就是返回label 就是具体的属性值,
#input_id是iupac的编码,smile_id是smiles的编码id
}
train_dataset = IUPACDataset(train=True, **dataset_kwargs)
eval_dataset = IUPACDataset(train=False, dataset_size=50000,
**dataset_kwargs)
#train_dataset = {
# "input_ids": input_ids,
# "smiles_ids": smiles_ids
# "attention_mask": attention_mask,
# "labels": target_ids,
# }
collator = T5Collator(tokenizer.pad_token_id) #进行seq对齐 填充padding
# Prepare optimizer and schedule (linear warmup and sqrt decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [{
"params": [p for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)],
"weight_decay": training_args.weight_decay,
}, {
"params": [p for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
}]
optimizer = AdamW(optimizer_grouped_parameters,
lr=0.0001,
eps=training_args.adam_epsilon)
learning_rate=0.0001
def lr_lambda(current_step):
#warmup = training_args.warmup_steps
warmup = 100
linear = current_step / warmup**1.5
sqrt = 1 / (max(warmup, current_step))**0.5
return learning_rate * min(linear, sqrt)
lr_schedule = LambdaLR(optimizer, lr_lambda)
#lr_schedule = LambdaLR(optimizer=optimizer, lr_lambda=lambda epoch:0.95**epoch)
n_layers = 6
n_heads = 4
model_depth = 512
ff_depth = 1024
dropout = 0.1
CLIP = 1
max_length = [tokenizer.vocab_size,smile_tokenizer.vocab_size]
device = "cuda" if torch.cuda.is_available() else 'cpu'
#device = 'cpu'
print("device:",device,tokenizer.vocab_size,max_length,smile_tokenizer._convert_token_to_id(smile_tokenizer.unk_token))
iupac2smile_model = Model(max_length, n_layers, n_heads, model_depth, ff_depth, dropout,device)
def initialize_weights(m):
if hasattr(m, 'weight') and m.weight.dim() > 1:
nn.init.xavier_uniform_(m.weight.data)
iupac2smile_model.apply(initialize_weights)
optimizer_iupac2smile = optim.Adam(iupac2smile_model.parameters(), lr=5e-5)
#we ignore the loss whenever the target token is a padding token.
criterion = nn.CrossEntropyLoss(ignore_index = smile_PAD_IDX)
print("iupac2smile_model smile_PAD_IDX,pad_token_id:",smile_PAD_IDX,tokenizer.pad_token_id)
train_dataloader = DataLoader(
train_dataset,
batch_size=64,
collate_fn=collator,
shuffle=True)
eval_dataloader = DataLoader(
eval_dataset,
batch_size=64,
collate_fn=collator,
shuffle=True)
'''
# training
input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
outputs = model(input_ids=input_ids, labels=labels)
loss = outputs.loss
logits = outputs.logits
# inference
input_ids = tokenizer("summarize: studies have shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# studies have shown that owning a dog is good for you.
'''
model.to(device)
iupac2smile_model.to(device)
N_EPOCHS = 10
loss_vals = []
loss_vals_eval = []
save_pt_freq = 1
for epoch in range(N_EPOCHS):
model.train()
iupac2smile_model.train()
epoch_loss= []
pbar = tqdm(train_dataloader)
pbar.set_description("[Train Epoch {}]".format(epoch))
for inputs in pbar:
inputs = prepare_input(inputs,device)
#outputs = model(input_ids=inputs["input_ids"][:,:-1],decoder_input_ids=inputs["input_ids"][:,1:] ,return_dict=True)
src = Variable(inputs["input_ids"].to(device))
outputs = model(input_ids=src[:,:-1],decoder_input_ids=src[:,1:],return_dict=True)
#['loss', 'logits', 'past_key_values', 'encoder_last_hidden_state']
#print(outputs.keys(),inputs["input_ids"].shape,labels.shape) #torch.Size([64, 80, 32128]) torch.Size([64, 19])
if outputs["logits"] is not None:
tr_loss_step = label_smoother(outputs, src[:,1:]) #outputs["logits"]
else:
tr_loss_step = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
optimizer.zero_grad()
tr_loss_step.backward()
if (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step)):
continue
#print("iupac2iupac train:",tr_loss_step.item())
pbar.set_postfix(loss=tr_loss_step.item())
optimizer.step()
trg, src = Variable(inputs["smiles_ids"].to(device)), Variable(inputs["input_ids"].to(device))
iupac2smile_model.zero_grad()
output = iupac2smile_model(src, trg[:,:-1])
#trg = [batch size, trg len]
#output = [batch size, trg len-1, output dim]
output_dim = output.shape[-1]
output = output.contiguous().view(-1, output_dim)
trg = trg[:,1:].contiguous().view(-1)
#trg = [(trg len - 1) * batch size]
#output = [(trg len - 1) * batch size, output dim]
loss = criterion(output, trg)
optimizer_iupac2smile.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(iupac2smile_model.parameters(), CLIP)
epoch_loss.append(loss.item())
optimizer_iupac2smile.step()
pbar.set_postfix(loss=loss.item())
lr_schedule.step()
loss_vals.append(np.mean(epoch_loss))
if (epoch+1)%save_pt_freq ==0:
torch.save(model.state_dict(), str(epoch)+'_iupac2iupac_model_inter.pt')
print("save iupac2iupac_model:",str(epoch+1)+'_iupac2iupac_model_inter.pt')
torch.save(iupac2smile_model.state_dict(), str(epoch)+'_iupac2smile_model_inter.pt')
print("save iupac2smile_model:",str(epoch+1)+'_iupac2smile_model_inter.pt')
'''
model.eval()
iupac2smile_model.eval()
epoch_loss_eval= []
pbar = tqdm(eval_dataloader)
pbar.set_description("[Eval Epoch {}]".format(epoch))
for inputs in pbar:
inputs = prepare_input(inputs,device)
src_iu = Variable(inputs["input_ids"].to(device))
outputs = model(input_ids=src_iu[:,:-1],decoder_input_ids=src_iu[:,1:],return_dict=True)
if outputs["logits"] is not None:
tr_loss_step = label_smoother(outputs, src_iu[:,1:]) #outputs["logits"]
else:
tr_loss_step = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
print("iupac2iupac eval:",tr_loss_step.item())
trg, src = Variable(inputs["smiles_ids"].to(device)), Variable(inputs["input_ids"].to(device))
iupac2smile_model.zero_grad()
output = iupac2smile_model(src, trg[:,:-1])
#trg = [batch size, trg len]
#output = [batch size, trg len-1, output dim]
output_dim = output.shape[-1]
output = output.contiguous().view(-1, output_dim)
trg = trg[:,1:].contiguous().view(-1)
#trg = [(trg len - 1) * batch size]
#output = [(trg len - 1) * batch size, output dim]
loss = criterion(output, trg)
epoch_loss_eval.append(loss.item())
pbar.set_postfix(loss=loss.item())
loss_vals_eval.append(np.mean(epoch_loss_eval))
'''
torch.save(model.state_dict(),pt.join("models", 'iupac2iupac_model_inter.pt'))
torch.save(model, pt.join("models","real_iupac2iupac_model_inter.pt"))
torch.save(iupac2smile_model.state_dict(), pt.join("models","iupac2smiles_model_inter.pt"))
torch.save(iupac2smile_model, pt.join("models","real_iupac2smiles_model_inter.pt"))
print(loss_vals,loss_vals_eval)
if __name__ == "__main__":
main()
#python t5_inter.py --output_dir ./ --dataset_dir ./download_pubchem/ --smile_vocab_fn ./vocab/smile.vocab --iupac_vocab_fn ./vocab/iupac_spm.model --dataset_filename ./iupacs_properties_100.csv
#iupacs_properties.txt iupac2iupac iupac2simile 分开训练版本
#python t5_inter.py --output_dir ./ --dataset_dir ./download_pubchem/ --smile_vocab_fn ./vocab/smile.vocab --iupac_vocab_fn ./vocab/iupac_spm.model --dataset_filename ./pubchem_30m_new.csv
#nohup python t5_inter.py --output_dir ./ --dataset_dir ./download_pubchem/ --smile_vocab_fn ./vocab/smile.vocab --iupac_vocab_fn ./vocab/iupac_spm.model --dataset_filename ./pubchem_30m_new.csv >inter.txt &