-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlangchain_helper.py
64 lines (45 loc) · 1.49 KB
/
langchain_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import time
from langchain.document_loaders.csv_loader import CSVLoader
from langchain_community.llms import OpenAI
from langchain_community.embeddings import OpenAIEmbeddings
from langchain.chains import RetrievalQA
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.vectorstores import Chroma
import streamlit as st
from dotenv import load_dotenv
load_dotenv()
embeddings = OpenAIEmbeddings()
llm = OpenAI(temperature=0.7)
main_placeholder = st.empty()
def create_vector_db():
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=400,
chunk_overlap=0
)
main_placeholder.text("Data Loading...Started...⚙️⚙️⚙️")
loader = CSVLoader("codebasics_faqs.csv")
time.sleep(5)
main_placeholder.text("Text Splitter...Started...⚙️⚙️⚙️")
data = loader.load_and_split(
text_splitter=text_splitter
)
time.sleep(5)
main_placeholder.text("Embedding Vector Started Building...⚙️⚙️⚙️")
db = Chroma.from_documents(
data,
embedding=embeddings,
persist_directory="ChromaEmb"
)
def get_qa_chain():
db = Chroma(
persist_directory="ChromaEmb",
embedding_function=embeddings
)
retriever = db.as_retriever()
chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="map_rerank"
)
return chain