-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_pdf.py
73 lines (59 loc) · 2.39 KB
/
process_pdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
from dotenv import load_dotenv
import json
import replicate
import pypdf
from utils import save_json_file
PAPERS_DIR = "papers"
load_dotenv()
def extract_text_from_pdf(pdf_path, result_path):
image_paths = []
image_meta_data = []
text_per_page = []
with open(pdf_path, 'rb') as file:
pdf_reader = pypdf.PdfReader(file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text = page.extract_text()
text_per_page.append(text)
for idx, image_file_object in enumerate(page.images):
save_path = os.path.join(result_path, image_file_object.name)
with open(save_path, "wb") as fp:
fp.write(image_file_object.data)
image_paths.append(save_path)
image_meta_data.append({
"name": save_path,
"page_num": page_num,
"position_in_page": idx,
})
return text_per_page, image_paths, image_meta_data
def generate_caption(image_path):
output = replicate.run(
"gfodor/instructblip:ca869b56b2a3b1cdf591c353deb3fa1a94b9c35fde477ef6ca1d248af56f9c84",
input={
"image_path": open(image_path, "rb"),
"prompt": "describe the figure image in the deep learning paper.",
}
)
return output
def process_pdf(pdf_path):
basename = pdf_path.split(".")[0]
result_path = f"./results/{basename}"
os.makedirs(result_path, exist_ok=True)
text_per_page, image_paths, image_meta_data = extract_text_from_pdf(pdf_path, result_path)
for idx, image_path in enumerate(image_paths):
caption = generate_caption(image_path)
image_meta_data[idx]["caption"] = caption
print("-"*20)
print(f"Caption for Image {idx}: {caption}")
page_num = image_meta_data[idx]["page_num"]
text_per_page[page_num] += ("\nFigure. " + caption + "\n")
save_json_file(os.path.join(result_path, "text_per_page.json"), text_per_page)
save_json_file(os.path.join(result_path, "image_meta_data.json"), image_meta_data)
return text_per_page
if __name__ == "__main__":
for file in os.listdir("papers"):
# Construct the full filepath
file_path = os.path.join("papers", file)
# Call your function with the filepath as argument
process_pdf(file_path)