-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBasic-Linear-Regression-Model.py
71 lines (42 loc) · 1.74 KB
/
Basic-Linear-Regression-Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/env python
# coding: utf-8
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn import linear_model
from sklearn.metrics import mean_squared_error, r2_score
#Reading data from the csv file
data = pd.read_csv("lrdata.csv")
data.head()
data.rename(columns = {'32.502345269453031':'A', '31.70700584656992':'B'}, inplace = True)
#Converting Pandas DataFrame to Numpy Array
data_x = data.A.to_numpy()
data_y = data.B.to_numpy()
#Spliting data into training and test sets
train_data_x = np.transpose(np.atleast_2d(data_x[:-30]))
test_data_x = np.transpose(np.atleast_2d(data_x[-30:]))
train_data_y = np.transpose(np.atleast_2d(data_y[:-30]))
test_data_y = np.transpose(np.atleast_2d(data_y[-30:]))
#Creating a linear regression object
regr = linear_model.LinearRegression()
#Training the model
regr.fit(train_data_x, train_data_y)
#Making Predictions on the test dataset
predictions = regr.predict(test_data_x)
#Estimated coefficients for the linear regression problem
print('Coefficients: \n', regr.coef_)
#Calculating the mean squared error
print('Mean squared error: %.2f'
% mean_squared_error(test_data_y, predictions))
#Coefficient of determination / $R^{2}$ error
#
# The best possible score is 1, which is obtained when the predicted values are the same as the actual values.
# A constant model that always predicts the expected value of y, disregarding the input features, would get a score of 0.0. It can be negative in case the model is arbitrarily worse.
print('Coefficient of determination: %.2f'
% r2_score(test_data_y, predictions))
#Visualizing the fit
plt.scatter(test_data_x, test_data_y)
plt.plot(test_data_x, predictions, color='red')
plt.xlabel("A")
plt.ylabel("B")
plt.show()