-
Notifications
You must be signed in to change notification settings - Fork 0
/
voc_code_backup.txt
625 lines (553 loc) · 33 KB
/
voc_code_backup.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
import sys as sys
import numpy
import tensorflow as tf
USC_EMAIL = 'azizim@usc.edu' # TODO(student): Fill to compete on rankings.
PASSWORD = '3e173a6bb4a2a4ce' # TODO(student): You will be given a password via email.
TRAIN_TIME_MINUTES = 11
class DatasetReader(object):
# TODO(student): You must implement this.
@staticmethod
def ReadFile(filename, term_index, tag_index):
"""Reads file into dataset, while populating term_index and tag_index.
Args:
filename: Path of text file containing sentences and tags. Each line is a
sentence and each term is followed by "/tag". Note: some terms might
have a "/" e.g. my/word/tag -- the term is "my/word" and the last "/"
separates the tag.
term_index: dictionary to be populated with every unique term (i.e. before
the last "/") to point to an integer. All integers must be utilized from
0 to number of unique terms - 1, without any gaps nor repetitions.
tag_index: same as term_index, but for tags.
the _index dictionaries are guaranteed to have no gaps when the method is
called i.e. all integers in [0, len(*_index)-1] will be used as values.
You must preserve the no-gaps property!
Return:
The parsed file as a list of lists: [parsedLine1, parsedLine2, ...]
each parsedLine is a list: [(termId1, tagId1), (termId2, tagId2), ...]
"""
infile = open(filename, 'r', encoding="utf8")
sentences = infile.readlines()
infile.close()
# tags = [[wordtag.rsplit('/', 1)[-1] for wordtag in sentence.strip().split()] for sentence in sentences]
# words = [[wordtag.rsplit('/', 1)[0] for wordtag in sentence.strip().split()] for sentence in sentences]
# parsed_file = [[(wordtag.rsplit('/', 1)[0],wordtag.rsplit('/', 1)[-1]) for wordtag in sentence.strip().split()] for sentence in sentences]
parsed_file = []
term_index_count = int(len(term_index))
tag_index_count = int(len(tag_index))
for sentence in sentences:
parsed_sentence = []
for wordtag in sentence.strip().split():
word_tag_split = wordtag.rsplit('/', 1)
word = word_tag_split[0]
tag = word_tag_split[-1]
# parsed_sentence.append((word, tag))
if word not in term_index.keys():
term_index[word] = term_index_count
term_index_count += 1
if tag not in tag_index.keys():
tag_index[tag] = tag_index_count
tag_index_count += 1
parsed_sentence.append((term_index.get(word), tag_index.get(tag)))
parsed_file.append(parsed_sentence)
# self.term_index = term_index
# self.tag_index = tag_index
return parsed_file
# TODO(student): You must implement this.
@staticmethod
def BuildMatrices(dataset):
"""Converts dataset [returned by ReadFile] into numpy arrays for tags, terms, and lengths.
Args:
dataset: Returned by method ReadFile. It is a list (length N) of lists:
[sentence1, sentence2, ...], where every sentence is a list:
[(word1, tag1), (word2, tag2), ...], where every word and tag are integers.
Returns:
Tuple of 3 numpy arrays: (terms_matrix, tags_matrix, lengths_arr)
terms_matrix: shape (N, T) int64 numpy array. Row i contains the word
indices in dataset[i].
tags_matrix: shape (N, T) int64 numpy array. Row i contains the tag
indices in dataset[i].
lengths: shape (N) int64 numpy array. Entry i contains the length of
sentence in dataset[i].
T is the maximum length. For example, calling as:
BuildMatrices([[(1,2), (4,10)], [(13, 20), (3, 6), (7, 8), (3, 20)]])
i.e. with two sentences, first with length 2 and second with length 4,
should return the tuple:
(
[[1, 4, 0, 0], # Note: 0 padding.
[13, 3, 7, 3]],
[[2, 10, 0, 0], # Note: 0 padding.
[20, 6, 8, 20]],
[2, 4]
)
"""
# term_index = self.term_index
# tag_index = self.tag_index
lengths_arr = numpy.array(list(map(len, dataset)))
T = max(lengths_arr)
N = lengths_arr.shape[0]
terms_matrix = numpy.zeros((N, T))
tags_matrix = numpy.zeros((N, T))
for sen_counter, sentence in enumerate(dataset):
for (word_counter, (word_idx, tag_idx)) in enumerate(sentence):
terms_matrix[sen_counter, word_counter] = word_idx
tags_matrix[sen_counter, word_counter] = tag_idx
terms_matrix = numpy.array(terms_matrix).astype(int)
tags_matrix = numpy.array(tags_matrix).astype(int)
lengths_arr = numpy.array(lengths_arr).astype(int)
return terms_matrix, tags_matrix, lengths_arr
@staticmethod
def ReadData(train_filename, test_filename=None):
"""Returns numpy arrays and indices for train (and optionally test) data.
NOTE: Please do not change this method. The grader will use an identitical
copy of this method (if you change this, your offline testing will no longer
match the grader).
Args:
train_filename: .txt path containing training data, one line per sentence.
The data must be tagged (i.e. "word1/tag1 word2/tag2 ...").
test_filename: Optional .txt path containing test data.
Returns:
A tuple of 3-elements or 4-elements, the later iff test_filename is given.
The first 2 elements are term_index and tag_index, which are dictionaries,
respectively, from term to integer ID and from tag to integer ID. The int
IDs are used in the numpy matrices.
The 3rd element is a tuple itself, consisting of 3 numpy arrsys:
- train_terms: numpy int matrix.
- train_tags: numpy int matrix.
- train_lengths: numpy int vector.
These 3 are identical to what is returned by BuildMatrices().
The 4th element is a tuple of 3 elements as above, but the data is
extracted from test_filename.
"""
term_index = {'__oov__': 0} # Out-of-vocab is term 0.
tag_index = {}
train_data = DatasetReader.ReadFile(train_filename, term_index, tag_index)
train_terms, train_tags, train_lengths = DatasetReader.BuildMatrices(train_data)
if test_filename:
test_data = DatasetReader.ReadFile(test_filename, term_index, tag_index)
test_terms, test_tags, test_lengths = DatasetReader.BuildMatrices(test_data)
if test_tags.shape[1] < train_tags.shape[1]:
diff = train_tags.shape[1] - test_tags.shape[1]
zero_pad = numpy.zeros(shape=(test_tags.shape[0], diff), dtype='int64')
test_terms = numpy.concatenate([test_terms, zero_pad], axis=1)
test_tags = numpy.concatenate([test_tags, zero_pad], axis=1)
elif test_tags.shape[1] > train_tags.shape[1]:
diff = test_tags.shape[1] - train_tags.shape[1]
zero_pad = numpy.zeros(shape=(train_tags.shape[0], diff), dtype='int64')
train_terms = numpy.concatenate([train_terms, zero_pad], axis=1)
train_tags = numpy.concatenate([train_tags, zero_pad], axis=1)
return (term_index, tag_index,
(train_terms, train_tags, train_lengths),
(test_terms, test_tags, test_lengths))
else:
return term_index, tag_index, (train_terms, train_tags, train_lengths)
class SequenceModel(object):
def __init__(self, max_length=310, num_terms=1000, num_tags=40):
"""Constructor. You can add code but do not remove any code.
The arguments are arbitrary: when you are training on your own, PLEASE set
them to the correct values (e.g. from main()).
Args:
max_lengths: maximum possible sentence length.
num_terms: the vocabulary size (number of terms).
num_tags: the size of the output space (number of tags).
You will be passed these arguments by the grader script.
"""
#self.max_length = max_length
#self.num_terms = num_terms
#self.num_tags = num_tags
#self.x = tf.placeholder(tf.int64, [None, self.max_length], 'X')
#self.lengths = tf.placeholder(tf.int32, [None], 'lengths')
self.max_length = max_length
self.num_terms = num_terms
self.num_tags = num_tags
self.x = tf.placeholder(tf.int32, [None, self.max_length], 'X')
self.lengths = tf.placeholder(tf.int64, [None], 'lengths')
self.tags = tf.placeholder(tf.int64, [None, self.max_length], 'tags')
# I usually prefer int32 for space and speed, but the embedding_lookup function expects int64
self.cell_type = 'rnn'
# self.cell_type = 'lstm'
# self.cell_type = 'bidic_rnn'
# self.cell_type = 'bidic_lstm'
self.log_step = 100
self.sess = tf.Session()
self.size_embed = 40 # HYP
self.state_size = 50 # HYP
# self.b = tf.placeholder(tf.float32, [None, self.max_length], 'b')
self.learn_rate = tf.placeholder(tf.float32, [], 'lr')
self.dropout_keep_prob = None #HYP
self.use_fc = True
self.epoch_return = True
self.use_bn = False
print("size_embed {}, state_size {}, dropout_keep_prob {}, use_fc {}, epoch_return {} usc_bn {}".format(
self.size_embed, self.state_size, self.dropout_keep_prob, self.use_fc, self.epoch_return, self.use_bn
))
# TODO(student): You must implement this.
def lengths_vector_to_binary_matrix(self, length_vector):
"""Returns a binary mask (as float32 tensor) from (vector) int64 tensor.
Specifically, the return matrix B will have the following:
B[i, :lengths[i]] = 1 and B[i, lengths[i]:] = 0 for each i.
However, since we are using tensorflow rather than numpy in this function,
you cannot set the range as described.
"""
# num_batch_ = length_vector.shape[0].value
# if num_batch_ == None:
# self.lens_to_bin = self.b
self.lens_to_bin = tf.cast(tf.sequence_mask(length_vector, self.max_length), tf.float32)
# if self.is_build:
# self.lens_to_bin = self.b
# else:
# num_batch_ = len(length_vector)
# self.lens_to_bin = numpy.zeros((num_batch_, self.max_length))
# for i in range(num_batch_):
# self.lens_to_bin[i, :length_vector[i]] = 1
# self.lens_to_bin = tf.convert_to_tensor(self.lens_to_bin, dtype=tf.float32)
# lengths is a placeholder.Your task here is to use it to make a binary matrix.For this, you might
# find the following useful:
# TensorFlow broadcasting[automatic, google for it].tf.expand_dims, tf.range, casting, and comparator
# operators. Or, you can do while -loops in TensorFlow, though if I was programming, I would look for
# a mathematical expression i.e.the functions above.
# len_to_bin_f = lambda x: tf.concat([tf.broadcast_to(1, [1, x]),tf.broadcast_to(0, [1, self.max_length - x])], 1)
# a = tf.map_fn(len_to_bin_f, length_vector)
# for i in tf.range(length_vector.shape[0]):
# b[i] =
#return tf.ones([tf.shape(length_vector), self.max_length], dtype=tf.float32)
return self.lens_to_bin
# TODO(student): You must implement this.
def save_model(self, filename):
"""Saves model to a file."""
import pickle
# sess = tf.Session()
var_dict = {v.name: v for v in tf.global_variables()}
pickle.dump(self.sess.run(var_dict), open(filename, 'bw'))
# saver = tf.train.Saver()
# model_path = saver.save(self.sess, "model.ckpt")
return
# TODO(student): You must implement this.
def load_model(self, filename):
"""Loads model from a file."""
import pickle
# tf.reset_default_graph()
# tf.global_variables_initializer()
# variables = tf.global_variables()
self.sess = tf.Session()
var_values = pickle.load(open(filename, 'rb'))
assign_ops = [v.assign(var_values[v.name]) for v in tf.global_variables()]
self.sess.run(assign_ops)
# param_dict = {}
# for var in variables:
# var_name = var.name[:-2]
# # print('Loading {} from checkpoint. Name: {}'.format(var.name, var_name))
# param_dict[var_name] = var
# saver = tf.train.Saver()
# saver.restore(self.sess, "model.ckpt")
return
# TODO(student): You must implement this.
def build_inference(self):
"""Build the expression from (self.x, self.lengths) to (self.logits).
Please do not change or override self.x nor self.lengths in this function.
Hint:
- Use lengths_vector_to_binary_matrix
- You might use tf.reshape, tf.cast, and/or tensor broadcasting.
"""
# tf.reset_default_graph()
# if 'embed:0' not in [v.name for v in tf.global_variables()]:
with tf.variable_scope("model", reuse=tf.AUTO_REUSE):
self.embed = tf.get_variable('embed', shape=[self.num_terms, self.size_embed],
dtype=tf.float32, initializer=None, trainable=True)
self.lens_to_bin = self.lengths_vector_to_binary_matrix(self.lengths)
# terms_batch = tf.placeholder(tf.int32, shape=[None, None]) #####
xemb_ = tf.nn.embedding_lookup(params=self.embed, ids=self.x, partition_strategy='mod', name=None,
validate_indices=True, max_norm=None)
states = []
if self.use_fc:
cur_state = tf.zeros(shape=[1, self.state_size])
else:
cur_state = tf.zeros(shape=[1, self.num_tags])
self.state_size = self.num_tags
# if not self.use_fc:
# self.state_size = int(self.num_tags)
# 2. put the time dimension on axis=1 for dynamic_rnn
s = tf.shape(xemb_) # store old shape
# shape = (batch x sentence, word, dim of char embeddings)
# xemb = tf.reshape(xemb_, shape=[-1, s[-2], s[-1]]) # (batch_size, timesteps, features)
xemb = xemb_
# word_lengths = tf.reshape(self.word_lengths, shape=[-1])
if self.cell_type == 'rnn':
#rnn_cell = tf.keras.layers.SimpleRNNCell(self.state_size, activation='tanh', use_bias=True,
# kernel_initializer='glorot_uniform',
# recurrent_initializer='orthogonal',recurrent_dropout=0.0,
# bias_initializer='zeros',kernel_regularizer=None,
# recurrent_regularizer=None,bias_regularizer=None,
# kernel_constraint=None,recurrent_constraint=None,
# bias_constraint=None, dropout=0.0)
rnn_cell = tf.nn.rnn_cell.BasicRNNCell(self.state_size)
if self.dropout_keep_prob is not None:
rnn_cell = tf.nn.rnn_cell.DropoutWrapper(rnn_cell, output_keep_prob=self.dropout_keep_prob,
input_keep_prob=1.0,
state_keep_prob=1.0)
#for i in range(self.max_length):
# cur_state = rnn_cell(xemb[:, i, :], [cur_state])[0] # shape (batch, state_size)
# states.append(cur_state)
#stacked_states = tf.stack(states, axis=1) # Shape (batch, max_length, state_size)
stacked_states = tf.nn.dynamic_rnn(rnn_cell, xemb, dtype=tf.float32)[0]
if self.use_bn:
stacked_states = tf.keras.layers.BatchNormalization()(stacked_states)
# rnn_cell = tf.keras.layers.RNN(rnn_cell, return_sequences=False, return_state=False,
# go_backwards =False, stateful=False, unroll=False,
# time_major =False)
# stacked_states = rnn_cell(xemb)
elif self.cell_type == 'lstm':
# rnn_cell = tf.keras.layers.LSTMCell(units=self.state_size, activation='tanh')
# rnn_cell = tf.nn.rnn_cell.LSTMCell(self.state_size,)
# rnn_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=self.state_size,
# forget_bias=1.0, state_is_tuple=True,
# activation=None, reuse=None, name=None, dtype=None)
rnn_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=self.state_size, reuse=tf.AUTO_REUSE)
if self.dropout_keep_prob is not None:
rnn_cell = tf.nn.rnn_cell.DropoutWrapper(rnn_cell, output_keep_prob=self.dropout_keep_prob,
input_keep_prob=1.0,
state_keep_prob=1.0)
# rnn_cell = tf.keras.layers.LSTMCell(units=self.state_size, activation='tanh',
# recurrent_activation='hard_sigmoid', use_bias=True,
# kernel_initializer='glorot_uniform',
# recurrent_initializer='orthogonal', bias_initializer='zeros',
# unit_forget_bias=True, kernel_regularizer=None,
# recurrent_regularizer=None, bias_regularizer=None,
# kernel_constraint=None, recurrent_constraint=None,
# bias_constraint=None, dropout=0.0,
# recurrent_dropout=0.0, implementation=1)
stacked_states = tf.nn.dynamic_rnn(rnn_cell, inputs=xemb, dtype=tf.float32)[0]
if self.use_bn:
stacked_states = tf.keras.layers.BatchNormalization()(stacked_states)
elif self.cell_type == "bidic_rnn":
rnn_fw_cell = tf.nn.rnn_cell.BasicRNNCell(self.state_size, reuse=tf.AUTO_REUSE) # forward direction cell
rnn_bw_cell = tf.nn.rnn_cell.BasicRNNCell(self.state_size, reuse=tf.AUTO_REUSE) # backward direction cell
if self.dropout_keep_prob is not None:
rnn_fw_cell = tf.nn.rnn_cell.DropoutWrapper(rnn_fw_cell, output_keep_prob=self.dropout_keep_prob,
input_keep_prob=1.0,
state_keep_prob=1.0)
rnn_bw_cell = tf.nn.rnn_cell.DropoutWrapper(rnn_bw_cell, output_keep_prob=self.dropout_keep_prob,
input_keep_prob=1.0,
state_keep_prob=1.0)
# bidirectional_dynamic_rnn: input: [batch_size, max_time, input_size]
# output: A tuple (outputs, output_states)
# where:outputs: A tuple (output_fw, output_bw) containing the forward and the backward rnn output `Tensor`.
stacked_states = tf.concat(tf.nn.bidirectional_dynamic_rnn(rnn_fw_cell, rnn_bw_cell, xemb,
dtype=tf.float32)[0], axis=2) # [batch_size,sequence_length,hidden_size*2]
if self.use_bn:
stacked_states = tf.keras.layers.BatchNormalization()(stacked_states)
elif self.cell_type == 'bidic_lstm':
lstm_fw_cell = tf.nn.rnn_cell.BasicLSTMCell(self.state_size,reuse=tf.AUTO_REUSE) # forward direction cell
lstm_bw_cell = tf.nn.rnn_cell.BasicLSTMCell(self.state_size,reuse=tf.AUTO_REUSE) # backward direction cell
if self.dropout_keep_prob is not None:
lstm_fw_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_fw_cell, output_keep_prob=self.dropout_keep_prob,
input_keep_prob=1.0,
state_keep_prob=1.0)
lstm_bw_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_bw_cell, output_keep_prob=self.dropout_keep_prob,
input_keep_prob=1.0,
state_keep_prob=1.0)
# bidirectional_dynamic_rnn: input: [batch_size, max_time, input_size]
# output: A tuple (outputs, output_states)
# where:outputs: A tuple (output_fw, output_bw) containing the forward and the backward rnn output `Tensor`.
stacked_states = tf.concat(tf.nn.bidirectional_dynamic_rnn(lstm_fw_cell, lstm_bw_cell, xemb,
dtype=tf.float32)[0], axis=2) #[batch_size,sequence_length,hidden_size*2]
if self.use_bn:
stacked_states = tf.keras.layers.BatchNormalization()(stacked_states)
else:
# cell_fw = tf.contrib.rnn.LSTMCell(self.state_size, state_is_tuple=True)
# cell_bw = tf.contrib.rnn.LSTMCell(self.state_size, state_is_tuple=True)
# _, ((_, output_fw), (_, output_bw)) = tf.nn.bidirectional_dynamic_rnn(cell_fw,
# cell_bw, char_embeddings,
# sequence_length=word_lengths,
# dtype=tf.float32)
stacked_states = 0
print("Wrong cell type")
# logits: A Tensor of shape[batch_size, sequence_length, num_decoder_symbols] and dtype float.
if self.use_fc:
self.logits = tf.contrib.layers.fully_connected(stacked_states, int(self.num_tags), activation_fn=tf.nn.tanh)
else:
self.logits = stacked_states
# self.logits = tf.cast(self.logits, dtype=tf.int32)
self._accuracy()
self.build_training()
return self.logits
# self.logits = tf.zeros([tf.shape(self.x)[0], self.max_length, self.num_tags])
# TODO(student): You must implement this.
def run_inference_(self, terms, lengths):
"""Evaluates self.logits given self.x and self.lengths.
Hint: This function is straight forward and you might find this code useful:
# logits = session.run(self.logits, {self.x: terms, self.lengths: lengths})
# return numpy.argmax(logits, axis=2)
Args:
terms: numpy int matrix, like terms_matrix made by BuildMatrices.
lengths: numpy int vector, like lengths made by BuildMatrices.
Returns:
numpy int matrix of the predicted tags, with shape identical to the int
matrix tags i.e. each term must have its associated tag. The caller will
*not* process the output tags beyond the sentence length i.e. you can have
arbitrary values beyond length.
"""
# logits = self.sess.run(self.logits, {self.x: terms, self.lengths: lengths})
# logits = self.build_inference()
logits = self.logits
return tf.cast(tf.argmax(logits, axis=2), tf.int64)
# return numpy.zeros_like(tags)
#return numpy.zeros_like(terms)
def run_inference(self, terms, lengths):
"""Evaluates self.logits given self.x and self.lengths.
Hint: This function is straight forward and you might find this code useful:
# logits = session.run(self.logits, {self.x: terms, self.lengths: lengths})
# return numpy.argmax(logits, axis=2)
Args:
terms: numpy int matrix, like terms_matrix made by BuildMatrices.
lengths: numpy int vector, like lengths made by BuildMatrices.
Returns:
numpy int matrix of the predicted tags, with shape identical to the int
matrix tags i.e. each term must have its associated tag. The caller will
*not* process the output tags beyond the sentence length i.e. you can have
arbitrary values beyond length.
"""
# logits = self.sess.run(self.logits, {self.x: terms, self.lengths: lengths})
# logits = self.build_inference()
#logits = self.logits
#return tf.cast(tf.argmax(logits, axis=2), tf.int64)
# return numpy.zeros_like(tags)
#return numpy.zeros_like(terms)
logits = self.sess.run(self.logits, {self.x: terms, self.lengths: lengths})
return numpy.argmax(logits, axis=2)
# TODO(student): You must implement this.
def build_training(self):
"""Prepares the class for training.
It is up to you how you implement this function, as long as train_on_batch
works.
Hint:
- Lookup tf.contrib.seq2seq.sequence_loss
- tf.losses.get_total_loss() should return a valid tensor (without raising
an exception). Equivalently, tf.losses.get_losses() should return a
non-empty list.
"""
# <-- Your implementation goes here.
# logits: A Tensor of shape [batch_size, sequence_length, num_decoder_symbols] and dtype float.
# targets: A Tensor of shape[batch_size, sequence_length] and dtype int.
# weights: A Tensor of shape[batch_size, sequence_length] and dtype float
self.loss = tf.contrib.seq2seq.sequence_loss(logits=self.logits, targets=self.tags,
weights=self.lens_to_bin, average_across_timesteps=True,
average_across_batch=True, softmax_loss_function=None, name=None)
tf.losses.add_loss(self.loss, loss_collection=tf.GraphKeys.LOSSES)
# g_s = tf.Variable(0, trainable=False)
# l_r = tf.train.exponential_decay(self.learn_rate, g_s, 500, .9, staircase=True)
l_r = self.learn_rate
opt = tf.train.AdamOptimizer(learning_rate=l_r) #HYP
# opt = tf.train.AdamOptimizer() # HYP
# opt = tf.train.AdadeltaOptimizer(1e-2)
# opt = tf.train.GradientDescentOptimizer(learning_rate=1e-2)
# opt = tf.train.MomentumOptimizer(learning_rate=l_r, momentum=.2)
# opt = tf.train.AdamOptimizer(learning_rate=0.001,beta1=0.9,beta2=0.999,epsilon=1e-08,use_locking=False,name='Adam')
self.train_op = opt.minimize(self.loss, var_list=tf.trainable_variables())
#print('tf.losses.get_total_loss', tf.losses.get_total_loss(add_regularization_losses=True,
# name='total_loss')) # should return a valid tensor
#print('tf.losses.get_losses', tf.losses.get_losses()) # should return a non-empty list
self.sess.run(tf.global_variables_initializer())
return
def _accuracy(self):
self.predict = self.run_inference_(self.x, self.lengths)
self.lens_to_bin = self.lengths_vector_to_binary_matrix(self.lengths)
self.correct = tf.multiply(tf.cast(tf.equal(self.predict, self.tags), tf.float32), self.lens_to_bin)
# self.accuracy_op = tf.reduce_mean(tf.cast(correct, tf.float32))
self.accuracy_op = tf.divide(tf.reduce_sum(self.correct), tf.cast(tf.reduce_sum(self.lengths), tf.float32))
return self.accuracy_op
def lengths_to_binary(self, length_vector):
num_batch_ = len(length_vector)
b_ = numpy.zeros((num_batch_, self.max_length))
for i in range(num_batch_):
b_[i, :length_vector[i]] = 1
return b_.astype(float)
def train_epoch(self, terms, tags, lengths, batch_size=32, learn_rate=6e-3):
"""Performs updates on the model given training training data.
This will be called with numpy arrays similar to the ones created in
Args:
terms: int64 numpy array of size (# sentences, max sentence length)
tags: int64 numpy array of size (# sentences, max sentence length)
lengths:
batch_size: int indicating batch size. Grader script will not pass this,
but it is only here so that you can experiment with a "good batch size"
from your main block.
learn_rate: float for learning rate. Grader script will not pass this,
but it is only here so that you can experiment with a "good learn rate"
from your main block.
Return:
boolean. You should return True iff you want the training to continue. If
you return False (or do not return anyhting) then training will stop after
the first iteration!
"""
# self.learn_rate = learn_rate
self.batch_size = batch_size
step = 0
losses = []
accuracies = []
num_training = len(terms)
max_itera_ = num_training // batch_size
for i in range(max_itera_):
# for i in range(50):
x_batch = terms[i * batch_size:(i + 1) * batch_size][:]
tags_batch = tags[i * batch_size:(i + 1) * batch_size]
lengths_batch = lengths[i * batch_size:(i + 1) * batch_size]
# x_batch = terms
# tags_batch = tags
# lengths_batch = lengths
# b_ = self.lengths_to_binary(lengths_batch)
feed_dict = {self.x: x_batch, self.lengths: lengths_batch,
self.tags: tags_batch.astype(numpy.int64),
self.learn_rate: learn_rate}
fetches = [self.train_op, self.loss, self.accuracy_op]
# fetches = [self.loss, self.accuracy_op, self.correct, self.lengths, self.logits,
# self.predict]
_, loss, accuracy = self.sess.run(fetches, feed_dict=feed_dict)
#losses.append(loss)
#accuracies.append(accuracy)
if step % self.log_step == 0:
print('iteration (%d)/(%d): train batch loss = %.3f, train batch accuracy = %.3f, train acc' %
(step, max_itera_, loss, accuracy))
step += 1
# Finally, make sure you uncomment the `return True` below.
return True
# TODO(student): You can implement this to help you, but we will not call it.
def evaluate(self, terms, tags, lengths, batch_size, learn_rate):
eval_accuracy = 0.0
eval_iter = 0
self.batch_size = batch_size
for i in range(terms.shape[0] // self.batch_size):
x_batch = terms[i * self.batch_size:(i + 1) * self.batch_size][:]
tags_batch = tags[i * self.batch_size:(i + 1) * self.batch_size]
lengths_batch = lengths[i * self.batch_size:(i + 1) * self.batch_size]
# b_ = self.lengths_to_binary(lengths_batch)
feed_dict = {self.x: x_batch, self.lengths: lengths_batch,
self.tags: tags_batch.astype(numpy.int64),
self.learn_rate: learn_rate}
fetches = [self.accuracy_op, self.predict]
accuracy, predict = self.sess.run(fetches, feed_dict=feed_dict)
eval_accuracy += accuracy
eval_iter += 1
print('accuracy on val: {}'.format(eval_accuracy / eval_iter))
return eval_accuracy / eval_iter
def main():
"""This will never be called by us, but you are encouraged to implement it for
local debugging e.g. to get a good model and good hyper-parameters (learning
rate, batch size, etc)."""
# Read dataset.
reader = DatasetReader
train_filename = sys.argv[1]
eval_batch_size = 10
print(train_filename)
test_filename = train_filename.replace('_train_', '_dev_')
term_index, tag_index, train_data, test_data = reader.ReadData(train_filename, test_filename)
(train_terms, train_tags, train_lengths) = train_data
(test_terms, test_tags, test_lengths) = test_data
model = SequenceModel(train_tags.shape[1], len(term_index), len(tag_index))
model.build_inference()
model.build_training()
for j in xrange(10):
model.train_epoch(train_terms, train_tags, train_lengths)
print('Finished epoch %i. Evaluating ...' % (j+1))
#model.evaluate(test_terms, test_tags, test_lengths, eval_batch_size)
if __name__ == '__main__':
main()