diff --git a/code/backend/batch/utilities/helpers/embedders/push_embedder.py b/code/backend/batch/utilities/helpers/embedders/push_embedder.py index 7ab2ac29d..58ba2f682 100644 --- a/code/backend/batch/utilities/helpers/embedders/push_embedder.py +++ b/code/backend/batch/utilities/helpers/embedders/push_embedder.py @@ -24,6 +24,7 @@ class PushEmbedder(EmbedderBase): def __init__(self, blob_client: AzureBlobStorageClient, env_helper: EnvHelper): + self.env_helper = env_helper self.llm_helper = LLMHelper() self.azure_search_helper = AzureSearchHelper() self.azure_computer_vision_client = AzureComputerVisionClient(env_helper) @@ -59,13 +60,15 @@ def __embed( in self.config.get_advanced_image_processing_image_types() ): logger.warning("Advanced image processing is not supported yet") - image_vectors = self.azure_computer_vision_client.vectorize_image( - source_url - ) - logger.info("Image vectors: " + str(image_vectors)) + caption = self.__generate_image_caption(source_url) + caption_vector = self.llm_helper.generate_embeddings(caption) + + image_vector = self.azure_computer_vision_client.vectorize_image(source_url) documents_to_upload.append( - self.__create_image_document(source_url, image_vectors) + self.__create_image_document( + source_url, image_vector, caption, caption_vector + ) ) else: documents: List[SourceDocument] = self.document_loading.load( @@ -85,6 +88,32 @@ def __embed( logger.error("Failed to upload documents to search index") raise Exception(response) + def __generate_image_caption(self, source_url): + model = self.env_helper.AZURE_OPENAI_VISION_MODEL + caption_system_message = """You are an assistant that generates rich descriptions of images. +You need to be accurate in the information you extract and detailed in the descriptons you generate. +Do not abbreviate anything and do not shorten sentances. Explain the image completely. +If you are provided with an image of a flow chart, describe the flow chart in detail. +If the image is mostly text, use OCR to extract the text as it is displayed in the image.""" + + messages = [ + {"role": "system", "content": caption_system_message}, + { + "role": "user", + "content": [ + { + "text": "Describe this image in detail. Limit the response to 500 words.", + "type": "text", + }, + {"image_url": source_url, "type": "image_url"}, + ], + }, + ] + + response = self.llm_helper.get_chat_completion(messages, model) + caption = response.choices[0].message.content + return caption + def __convert_to_search_document(self, document: SourceDocument): embedded_content = self.llm_helper.generate_embeddings(document.content) metadata = { @@ -111,7 +140,13 @@ def __generate_document_id(self, source_url: str) -> str: hash_key = hashlib.sha1(f"{source_url}_1".encode("utf-8")).hexdigest() return f"doc_{hash_key}" - def __create_image_document(self, source_url: str, image_vectors: List[float]): + def __create_image_document( + self, + source_url: str, + image_vector: List[float], + content: str, + content_vector: List[float], + ): parsed_url = urlparse(source_url) file_url = parsed_url.scheme + "://" + parsed_url.netloc + parsed_url.path @@ -127,9 +162,9 @@ def __create_image_document(self, source_url: str, image_vectors: List[float]): return { "id": document_id, - "content": "", - "content_vector": [], - "image_vector": image_vectors, + "content": content, + "content_vector": content_vector, + "image_vector": image_vector, "metadata": json.dumps( { "id": document_id, diff --git a/code/backend/batch/utilities/helpers/env_helper.py b/code/backend/batch/utilities/helpers/env_helper.py index 138ecd890..b860a79c2 100644 --- a/code/backend/batch/utilities/helpers/env_helper.py +++ b/code/backend/batch/utilities/helpers/env_helper.py @@ -86,6 +86,7 @@ def __load_config(self, **kwargs) -> None: self.AZURE_OPENAI_MODEL_NAME = os.getenv( "AZURE_OPENAI_MODEL_NAME", "gpt-35-turbo" ) + self.AZURE_OPENAI_VISION_MODEL = os.getenv("AZURE_OPENAI_VISION_MODEL", "gpt-4") self.AZURE_OPENAI_TEMPERATURE = os.getenv("AZURE_OPENAI_TEMPERATURE", "0") self.AZURE_OPENAI_TOP_P = os.getenv("AZURE_OPENAI_TOP_P", "1.0") self.AZURE_OPENAI_MAX_TOKENS = os.getenv("AZURE_OPENAI_MAX_TOKENS", "1000") diff --git a/code/backend/batch/utilities/helpers/llm_helper.py b/code/backend/batch/utilities/helpers/llm_helper.py index 8c6084033..bbbe83e52 100644 --- a/code/backend/batch/utilities/helpers/llm_helper.py +++ b/code/backend/batch/utilities/helpers/llm_helper.py @@ -117,9 +117,9 @@ def get_chat_completion_with_functions( function_call=function_call, ) - def get_chat_completion(self, messages: list[dict]): + def get_chat_completion(self, messages: list[dict], model: str | None = None): return self.openai_client.chat.completions.create( - model=self.llm_model, + model=model or self.llm_model, messages=messages, ) diff --git a/code/tests/functional/app_config.py b/code/tests/functional/app_config.py index b1c841c14..18837a4da 100644 --- a/code/tests/functional/app_config.py +++ b/code/tests/functional/app_config.py @@ -28,6 +28,7 @@ class AppConfig: "AZURE_OPENAI_MAX_TOKENS": "1000", "AZURE_OPENAI_MODEL": "some-openai-model", "AZURE_OPENAI_MODEL_NAME": "some-openai-model-name", + "AZURE_OPENAI_VISION_MODEL": "some-openai-vision-model", "AZURE_OPENAI_RESOURCE": "some-openai-resource", "AZURE_OPENAI_STREAM": "True", "AZURE_OPENAI_STOP_SEQUENCE": "", diff --git a/code/tests/functional/conftest.py b/code/tests/functional/conftest.py index 6e5e6408f..8f76a14e4 100644 --- a/code/tests/functional/conftest.py +++ b/code/tests/functional/conftest.py @@ -162,6 +162,33 @@ def setup_default_mocking(httpserver: HTTPServer, app_config: AppConfig): } ) + httpserver.expect_request( + f"/openai/deployments/{app_config.get('AZURE_OPENAI_VISION_MODEL')}/chat/completions", + method="POST", + ).respond_with_json( + { + "id": "chatcmpl-6v7mkQj980V1yBec6ETrKPRqFjNw9", + "object": "chat.completion", + "created": 1679072642, + "model": app_config.get("AZURE_OPENAI_VISION_MODEL"), + "usage": { + "prompt_tokens": 58, + "completion_tokens": 68, + "total_tokens": 126, + }, + "choices": [ + { + "message": { + "role": "assistant", + "content": "This is a caption for the image", + }, + "finish_reason": "stop", + "index": 0, + } + ], + } + ) + httpserver.expect_request( f"/indexes('{app_config.get('AZURE_SEARCH_CONVERSATIONS_LOG_INDEX')}')/docs/search.index", method="POST", diff --git a/code/tests/functional/tests/functions/test_advanced_image_processing.py b/code/tests/functional/tests/functions/test_advanced_image_processing.py index 300ec4a7e..fd41d6a3d 100644 --- a/code/tests/functional/tests/functions/test_advanced_image_processing.py +++ b/code/tests/functional/tests/functions/test_advanced_image_processing.py @@ -103,6 +103,9 @@ def test_image_passed_to_computer_vision_to_generate_image_embeddings( RequestMatcher( path=COMPUTER_VISION_VECTORIZE_IMAGE_PATH, method=COMPUTER_VISION_VECTORIZE_IMAGE_REQUEST_METHOD, + json={ + "url": ANY, + }, query_string="api-version=2024-02-01&model-version=2023-04-15", headers={ "Content-Type": "application/json", @@ -115,7 +118,87 @@ def test_image_passed_to_computer_vision_to_generate_image_embeddings( )[0] assert request.get_json()["url"].startswith( - f"{app_config.get('AZURE_COMPUTER_VISION_ENDPOINT')}{app_config.get('AZURE_BLOB_CONTAINER_NAME')}/{FILE_NAME}" + f"{app_config.get('AZURE_STORAGE_ACCOUNT_ENDPOINT')}{app_config.get('AZURE_BLOB_CONTAINER_NAME')}/{FILE_NAME}" + ) + + +def test_image_passed_to_llm_to_generate_caption( + message: QueueMessage, httpserver: HTTPServer, app_config: AppConfig +): + # when + batch_push_results.build().get_user_function()(message) + + # then + request = verify_request_made( + mock_httpserver=httpserver, + request_matcher=RequestMatcher( + path=f"/openai/deployments/{app_config.get('AZURE_OPENAI_VISION_MODEL')}/chat/completions", + method="POST", + json={ + "messages": [ + { + "role": "system", + "content": """You are an assistant that generates rich descriptions of images. +You need to be accurate in the information you extract and detailed in the descriptons you generate. +Do not abbreviate anything and do not shorten sentances. Explain the image completely. +If you are provided with an image of a flow chart, describe the flow chart in detail. +If the image is mostly text, use OCR to extract the text as it is displayed in the image.""", + }, + { + "role": "user", + "content": [ + { + "text": "Describe this image in detail. Limit the response to 500 words.", + "type": "text", + }, + {"image_url": ANY, "type": "image_url"}, + ], + }, + ], + "model": app_config.get("AZURE_OPENAI_VISION_MODEL"), + }, + headers={ + "Accept": "application/json", + "Content-Type": "application/json", + "Authorization": f"Bearer {app_config.get('AZURE_OPENAI_API_KEY')}", + "Api-Key": app_config.get("AZURE_OPENAI_API_KEY"), + }, + query_string="api-version=2024-02-01", + times=1, + ), + )[0] + + assert request.get_json()["messages"][1]["content"][1]["image_url"].startswith( + f"{app_config.get('AZURE_STORAGE_ACCOUNT_ENDPOINT')}{app_config.get('AZURE_BLOB_CONTAINER_NAME')}/{FILE_NAME}" + ) + + +def test_embeddings_generated_for_caption( + message: QueueMessage, httpserver: HTTPServer, app_config: AppConfig +): + # when + batch_push_results.build().get_user_function()(message) + + # then + verify_request_made( + mock_httpserver=httpserver, + request_matcher=RequestMatcher( + path=f"/openai/deployments/{app_config.get('AZURE_OPENAI_EMBEDDING_MODEL')}/embeddings", + method="POST", + json={ + "input": ["This is a caption for the image"], + "model": app_config.get("AZURE_OPENAI_EMBEDDING_MODEL"), + "encoding_format": "base64", + }, + headers={ + "Accept": "application/json", + "Content-Type": "application/json", + "Authorization": f"Bearer {app_config.get('AZURE_OPENAI_API_KEY')}", + "Api-Key": app_config.get("AZURE_OPENAI_API_KEY"), + }, + query_string="api-version=2024-02-01", + times=1, + ), ) @@ -343,8 +426,11 @@ def test_makes_correct_call_to_store_documents_in_search_index( "value": [ { "id": expected_id, - "content": "", - "content_vector": [], + "content": "This is a caption for the image", + "content_vector": [ + 0.018990106880664825, + -0.0073809814639389515, + ], "image_vector": [1.0, 2.0, 3.0], "metadata": json.dumps( { diff --git a/code/tests/utilities/helpers/test_push_embedder.py b/code/tests/utilities/helpers/test_push_embedder.py index 48f5a7b0a..fa5434067 100644 --- a/code/tests/utilities/helpers/test_push_embedder.py +++ b/code/tests/utilities/helpers/test_push_embedder.py @@ -22,8 +22,13 @@ def llm_helper_mock(): llm_helper.get_embedding_model.return_value.embed_query.return_value = [ 0 ] * 1536 + mock_completion = llm_helper.get_chat_completion.return_value + choice = MagicMock() + choice.message.content = "This is a caption for an image" + mock_completion.choices = [choice] + llm_helper.generate_embeddings.return_value = [123] - yield mock + yield llm_helper @pytest.fixture(autouse=True) @@ -129,7 +134,46 @@ def test_embed_file_advanced_image_processing_vectorizes_image( ) +def test_embed_file_advanced_image_processing_uses_vision_model_for_captioning( + llm_helper_mock, +): + # given + env_helper_mock = MagicMock() + env_helper_mock.AZURE_OPENAI_VISION_MODEL = "gpt-4" + push_embedder = PushEmbedder(MagicMock(), env_helper_mock) + source_url = "http://localhost:8080/some-file-name.jpg" + + # when + push_embedder.embed_file(source_url, "some-file-name.jpg") + + # then + llm_helper_mock.get_chat_completion.assert_called_once_with( + [ + { + "role": "system", + "content": """You are an assistant that generates rich descriptions of images. +You need to be accurate in the information you extract and detailed in the descriptons you generate. +Do not abbreviate anything and do not shorten sentances. Explain the image completely. +If you are provided with an image of a flow chart, describe the flow chart in detail. +If the image is mostly text, use OCR to extract the text as it is displayed in the image.""", + }, + { + "role": "user", + "content": [ + { + "text": "Describe this image in detail. Limit the response to 500 words.", + "type": "text", + }, + {"image_url": source_url, "type": "image_url"}, + ], + }, + ], + env_helper_mock.AZURE_OPENAI_VISION_MODEL, + ) + + def test_embed_file_advanced_image_processing_stores_embeddings_in_search_index( + llm_helper_mock, azure_computer_vision_mock, azure_search_helper_mock: MagicMock, ): @@ -153,12 +197,16 @@ def test_embed_file_advanced_image_processing_stores_embeddings_in_search_index( hash_key = hashlib.sha1(f"{host_path}_1".encode("utf-8")).hexdigest() expected_id = f"doc_{hash_key}" + llm_helper_mock.generate_embeddings.assert_called_once_with( + "This is a caption for an image" + ) + azure_search_helper_mock.return_value.get_search_client.return_value.upload_documents.assert_called_once_with( [ { "id": expected_id, - "content": "", - "content_vector": [], + "content": "This is a caption for an image", + "content_vector": [123], "image_vector": image_embeddings, "metadata": json.dumps( { @@ -265,7 +313,7 @@ def test_embed_file_generates_embeddings_for_documents(llm_helper_mock): ) # then - llm_helper_mock.return_value.generate_embeddings.assert_has_calls( + llm_helper_mock.generate_embeddings.assert_has_calls( [call("some content"), call("some other content")] ) @@ -291,7 +339,7 @@ def test_embed_file_stores_documents_in_search_index( { "id": expected_chunked_documents[0].id, "content": expected_chunked_documents[0].content, - "content_vector": llm_helper_mock.return_value.generate_embeddings.return_value, + "content_vector": llm_helper_mock.generate_embeddings.return_value, "metadata": json.dumps( { "id": expected_chunked_documents[0].id, @@ -311,7 +359,7 @@ def test_embed_file_stores_documents_in_search_index( { "id": expected_chunked_documents[1].id, "content": expected_chunked_documents[1].content, - "content_vector": llm_helper_mock.return_value.generate_embeddings.return_value, + "content_vector": llm_helper_mock.generate_embeddings.return_value, "metadata": json.dumps( { "id": expected_chunked_documents[1].id, @@ -338,10 +386,8 @@ def test_embed_file_raises_exception_on_failure( # given push_embedder = PushEmbedder(MagicMock(), MagicMock()) - successful_indexing_result = MagicMock() - successful_indexing_result.succeeded = True - failed_indexing_result = MagicMock() - failed_indexing_result.succeeded = False + successful_indexing_result = MagicMock(succeeded=True) + failed_indexing_result = MagicMock(succeeded=False) azure_search_helper_mock.return_value.get_search_client.return_value.upload_documents.return_value = [ successful_indexing_result, failed_indexing_result, diff --git a/infra/main.bicep b/infra/main.bicep index a0c3b6597..461fb0816 100644 --- a/infra/main.bicep +++ b/infra/main.bicep @@ -108,7 +108,7 @@ param azureOpenAIModelCapacity int = 30 param useAdvancedImageProcessing bool = false @description('Azure OpenAI Vision Model Deployment Name') -param azureOpenAIVisionModel string = 'gpt-4-vision' +param azureOpenAIVisionModel string = 'gpt-4' @description('Azure OpenAI Vision Model Name') param azureOpenAIVisionModelName string = 'gpt-4' diff --git a/infra/main.bicepparam b/infra/main.bicepparam index 2aaec96f4..e19c2656e 100644 --- a/infra/main.bicepparam +++ b/infra/main.bicepparam @@ -25,7 +25,7 @@ param azureOpenAIModelName = readEnvironmentVariable('AZURE_OPENAI_MODEL_NAME', param azureOpenAIModelVersion = readEnvironmentVariable('AZURE_OPENAI_MODEL_VERSION', '0613') param azureOpenAIModelCapacity = int(readEnvironmentVariable('AZURE_OPENAI_MODEL_CAPACITY', '30')) param useAdvancedImageProcessing = bool(readEnvironmentVariable('USE_ADVANCED_IMAGE_PROCESSING', 'false')) -param azureOpenAIVisionModel = readEnvironmentVariable('AZURE_OPENAI_VISION_MODEL', 'gpt-4-vision') +param azureOpenAIVisionModel = readEnvironmentVariable('AZURE_OPENAI_VISION_MODEL', 'gpt-4') param azureOpenAIVisionModelName = readEnvironmentVariable('AZURE_OPENAI_VISION_MODEL_NAME', 'gpt-4') param azureOpenAIVisionModelVersion = readEnvironmentVariable('AZURE_OPENAI_VISION_MODEL_VERSION', 'vision-preview') param azureOpenAIVisionModelCapacity = int(readEnvironmentVariable('AZURE_OPENAI_VISION_MODEL_CAPACITY', '10')) diff --git a/infra/main.json b/infra/main.json index fec8cca5a..9404b20cc 100644 --- a/infra/main.json +++ b/infra/main.json @@ -5,7 +5,7 @@ "_generator": { "name": "bicep", "version": "0.27.1.19265", - "templateHash": "13373198886203455254" + "templateHash": "9021391279672164541" } }, "parameters": { @@ -224,7 +224,7 @@ }, "azureOpenAIVisionModel": { "type": "string", - "defaultValue": "gpt-4-vision", + "defaultValue": "gpt-4", "metadata": { "description": "Azure OpenAI Vision Model Deployment Name" }