-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
207 lines (187 loc) · 8.83 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import json
import pickle
import numpy as np
from torch.utils.data import Dataset
class Vocab:
''' vocabulary of dataset '''
def __init__(self, vocab_list, add_pad=True, add_unk=True):
self._vocab_dict = dict()
self._reverse_vocab_dict = dict()
self._length = 0
if add_pad: # pad_id should be zero (for mask)
self.pad_word = '<pad>'
self.pad_id = self._length
self._vocab_dict[self.pad_word] = self.pad_id
self._length += 1
if add_unk:
self.unk_word = '<unk>'
self.unk_id = self._length
self._vocab_dict[self.unk_word] = self.unk_id
self._length += 1
for w in vocab_list:
self._vocab_dict[w] = self._length
self._length += 1
for w, i in self._vocab_dict.items():
self._reverse_vocab_dict[i] = w
def word_to_id(self, word):
if hasattr(self, 'unk_id'):
return self._vocab_dict.get(word, self.unk_id)
return self._vocab_dict[word]
def id_to_word(self, idx):
if hasattr(self, 'unk_word'):
return self._reverse_vocab_dict.get(idx, self.unk_word)
return self._reverse_vocab_dict[idx]
def has_word(self, word):
return word in self._vocab_dict
def __len__(self):
return self._length
class Tokenizer:
''' transform text to indices '''
def __init__(self, word_vocab, lower):
ner_list = ['O', 'B', 'I']
ner_vocab = Vocab(ner_list, add_pad=False, add_unk=False)
self.vocab = {'word': word_vocab, 'ner': ner_vocab}
self.maxlen = {
'res14': {'word': 80},
'laptop': {'word': 80},
'res16': {'word': 80},
'elec': {'word': 400},
'yelp': {'word': 400},
'res14_ae': {'word': 80, 'ner': 80},
'laptop_ae': {'word': 80, 'ner': 80}
}
self.lower = lower
@classmethod
def from_files(cls, fnames, lower=True):
all_tokens = set()
for fname in fnames:
fdata = json.load(open(fname, 'r', encoding='utf-8'))
for data in fdata:
all_tokens.update([w.lower() if lower else w for w in data['token']])
all_tokens.update(['<aspect>', '</aspect>'])
return cls(word_vocab=Vocab(all_tokens), lower=lower)
@staticmethod
def _pad_sequence(sequence, pad_id, maxlen, dtype='int64', padding='post', truncating='post'):
x = (np.zeros(maxlen) + pad_id).astype(dtype)
if truncating == 'pre':
trunc = sequence[-maxlen:]
else:
trunc = sequence[:maxlen]
trunc = np.asarray(trunc, dtype=dtype)
if padding == 'post':
x[:len(trunc)] = trunc
else:
x[-len(trunc):] = trunc
return x
def to_sequence(self, tokens, vocab_name, domain, reverse=False, padding='post', truncating='post'):
if vocab_name == 'word' and self.lower:
tokens = [t.lower() for t in tokens]
sequence = [self.vocab[vocab_name].word_to_id(t) for t in tokens]
pad_id = self.vocab[vocab_name].pad_id if hasattr(self.vocab[vocab_name], 'pad_id') else 0
maxlen = self.maxlen[domain][vocab_name]
if reverse:
sequence.reverse()
return Tokenizer._pad_sequence(sequence, pad_id=pad_id, maxlen=maxlen, padding=padding, truncating=truncating)
def pad_sequence(self, sequence, pad_id, maxlen, reverse=False, dtype='int64', padding='post', truncating='post'):
if dtype == 'int64':
sequence = [int(w) for w in sequence]
elif dtype == 'float32':
sequence = [float(w) for w in sequence]
if reverse:
sequence.reverse()
return Tokenizer._pad_sequence(sequence, pad_id=pad_id, maxlen=maxlen, dtype=dtype, padding=padding, truncating=truncating)
class MyDataset(Dataset):
''' PyTorch standard dataset class '''
def __init__(self, side, tasks, domains, fname, tokenizer):
data_file = os.path.join('dats', '{:s}_{:s}'.format('_'.join(domains.values()), os.path.split(fname)[-1].replace('.json', '.cache')))
if os.path.exists(data_file):
print('loading dataset: {:s}'.format(data_file))
dataset = pickle.load(open(data_file, 'rb'))
else:
print('building dataset...')
read_func = {'asc': self._read_asc, 'dsc': self._read_dsc, 'ae': self._read_ae}
dataset = read_func[tasks[side]](fname, domains[side], tokenizer)
pickle.dump(dataset, open(data_file, 'wb'))
self._dataset = dataset
@staticmethod
def _read_asc(fname, domain, tokenizer):
polarity_dict = {'positive': 0, 'negative': 1, 'neutral': 2}
dataset = list()
fdata = json.load(open(fname, 'r', encoding='utf-8'))
for data in fdata:
for aspect in data['aspects']:
start, end = int(aspect['from']), int(aspect['to'])
text = data['token'][:start] + ['<aspect>'] + data['token'][start:end] + ['</aspect>'] + data['token'][end:]
text = tokenizer.to_sequence(text, 'word', domain)
term = tokenizer.to_sequence(aspect['term'], 'word', domain)
aspect_mask = [1 if start <= i < end else 0 for i in range(len(data['token']))]
aspect_mask = tokenizer.pad_sequence(aspect_mask, 0, maxlen=tokenizer.maxlen[domain]['word'])
polarity = polarity_dict[aspect['polarity']]
dataset.append({'text': text, 'aspect': term, 'aspect_mask': aspect_mask, 'polarity': polarity})
return dataset
@staticmethod
def _read_dsc(fname, domain, tokenizer):
polarity_dict = {'positive': 0, 'negative': 1, 'neutral': 2}
dataset = list()
fdata = json.load(open(fname, 'r', encoding='utf-8'))
for data in fdata:
text = tokenizer.to_sequence(data['token'], 'word', domain)
term = tokenizer.to_sequence(['NULL'], 'word', domain)
aspect_mask = tokenizer.pad_sequence([], 0, maxlen=tokenizer.maxlen[domain]['word'])
polarity = polarity_dict[data['polarity']]
dataset.append({'text': text, 'aspect': term, 'aspect_mask': aspect_mask, 'polarity': polarity})
return dataset
@staticmethod
def _read_ae(fname, domain, tokenizer):
dataset = list()
fdata = json.load(open(fname, 'r', encoding='utf-8'))
for data in fdata:
text = tokenizer.to_sequence(data['token'], 'word', domain)
term = tokenizer.to_sequence(['NULL'], 'word', domain)
aspect_mask = tokenizer.pad_sequence([], 0, maxlen=tokenizer.maxlen[domain]['word'])
polarity = tokenizer.to_sequence(data['ner'], 'ner', domain) # ner labels
dataset.append({'text': text, 'aspect': term, 'aspect_mask': aspect_mask, 'polarity': polarity})
return dataset
def __getitem__(self, index):
return self._dataset[index]
def __len__(self):
return len(self._dataset)
def build_tokenizer(domains, fnames):
data_file = os.path.join('dats', f"{'_'.join(domains.values())}_tokenizer.dat")
if os.path.exists(data_file):
print(f"loading tokenizer: {data_file}")
tokenizer = pickle.load(open(data_file, 'rb'))
else:
print('building tokenizer...')
tokenizer = Tokenizer.from_files(fnames)
pickle.dump(tokenizer, open(data_file, 'wb'))
return tokenizer
def _load_wordvec(data_path, word_dim, vocab=None):
with open(data_path, 'r', encoding='utf-8', newline='\n', errors='ignore') as f:
word_vec = dict()
word_vec['<pad>'] = np.zeros(word_dim).astype('float32')
for line in f:
tokens = line.rstrip().split()
if (len(tokens)-1) != word_dim:
continue
if tokens[0] == '<pad>' or tokens[0] == '<unk>': # avoid them
continue
if vocab is None or vocab.has_word(tokens[0]):
word_vec[tokens[0]] = np.asarray(tokens[1:], dtype='float32')
return word_vec
def build_embedding_matrix(domains, vocab, word_dim=300):
data_file = os.path.join('dats', f"{'_'.join(domains.values())}_embedding_matrix.dat")
if os.path.exists(data_file):
print(f"loading embedding matrix: {data_file}")
embedding_matrix = pickle.load(open(data_file, 'rb'))
else:
print('loading word vectors...')
embedding_matrix = np.random.uniform(-0.25, 0.25, (len(vocab), word_dim)).astype('float32')
word_vec = _load_wordvec(os.path.join('glove', 'glove.840B.300d.txt'), word_dim, vocab)
for i in range(len(vocab)):
vec = word_vec.get(vocab.id_to_word(i))
if vec is not None:
embedding_matrix[i] = vec
pickle.dump(embedding_matrix, open(data_file, 'wb'))
return embedding_matrix