-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathenergyoff.m
170 lines (147 loc) · 6.15 KB
/
energyoff.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% BRAVEHEART - Open source software for electrocardiographic and vectorcardiographic analysis
% energyoff.m -- Find End of T wave based on method described in:
% Lars Johannesen, Jose Vicente, Meisam Hosseini, David G. Strauss
% Automated Algorithm for J-Tpeak and Tpeak-Tend Assessment of Drug-Induced Proarrhythmia Risk
% PLOS ONE | DOI:10.1371/journal.pone.0166925 December 30, 2016
%
% Copyright 2016-2025 Hans F. Stabenau and Jonathan W. Waks
%
% Source code/executables: https://github.com/BIVectors/BRAVEHEART
% Contact: braveheart.ecg@gmail.com
%
% BRAVEHEART is free software: you can redistribute it and/or modify it under the terms of the GNU
% General Public License as published by the Free Software Foundation, either version 3 of the License,
% or (at your option) any later version.
%
% BRAVEHEART is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
% without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
% See the GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License along with this program.
% If not, see <https://www.gnu.org/licenses/>.
%
% This software is for research purposes only and is not intended to diagnose or treat any disease.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function off = energyoff(fs, fsprime, T, endw, R, RR, debug)
% off = energyoff(fs, fsprime, T, endw, R, RR)
% compute T-end a la
% Lars Johannesen1*, Jose Vicente1,2, Meisam Hosseini1, David G. Strauss1*
% Automated Algorithm for J-Tpeak and Tpeak-Tend Assessment of Drug-Induced Proarrhythmia Risk
% PLOS ONE | DOI:10.1371/journal.pone.0166925 December 30, 2016 5 /
energydebug=false;
fsl = fs(T:endw);
fspl = fsprime(T:endw);
N = endw-T+1;
% energy of lastCandidToff_segment: higher amplitude has less energy
energy = zeros(N,1);
%toff candidates: index of local minima of energy signal
energy(1) = fs(T);
indexlocalMinimaEnergy = [];
flagmaxima = true;
for i=2:N
switch sign(fspl(i))
case -1 % negative derivative: decreases energy
energy(i) = energy(i-1) - fsl(i);
if flagmaxima; indexlocalMinimaEnergy(end+1) = i; end
indexlocalMinimaEnergy(end) = i;
flagmaxima = false;
case 1 % positive derivative: increases energy
energy(i) = energy(i-1) + fsl(i);
flagmaxima = true;
otherwise % zero derivative: preserves energy
energy(i) = energy(i-1);
end
end
%normalize energy between [0-100] due to current lastCandidToff
% Higher amount of energy has higher amplitude
energyNormal = (energy-min(energy))/(max(energy)-min(energy));
derivativeEnergy = deriv5(energyNormal, 'T');
if debug && energydebug
plot(T:endw, energyNormal*5);
text(indexlocalMinimaEnergy+T-1, energyNormal(indexlocalMinimaEnergy)*5, 'M');
plot(T:endw, 10*derivativeEnergy);
end
% energy(0) should have highest value if lastCandid (tpeak) is chosen appropriately
% startEnergy = 1;
% for i=1:N
% if energyNormal(i) > energyNormal(i+1)
% startEnergy = i;
% break;
% end
% end
% re-adjust the index of toff candidates (indexlocalMinimaEnergy)
% based on derivative of energy.
% The greatest localmaxima will be a new toff of each candidate
NminE = numel(indexlocalMinimaEnergy);
indexNewToffCandidates = zeros(NminE,1);
j=1; % j=point after T-wave peak or local minimum of energy
for i=1:NminE
toff_index2 = indexlocalMinimaEnergy(i);
% indexMin = local minimum of derivative
[~,indexMin] = min(fspl(j:toff_index2));
toff_index1 = indexMin + j-1;
% now: toff_index1 = local minimum of the derivative (steepest
% negative slope) - NB I don't know how this works for negative
% T-waves, but we don't care if using VM lead
% toff_index2 = local minimum of the energy
% adjust toff_index1 and toff_index2
if (toff_index1 > toff_index2)
error('Shouldn''t get here 1 in energyoff');
% tmp = toff_index1;
% toff_index1 = toff_index2;
% toff_index2 = tmp;
end
if(toff_index1 == toff_index2); toff_index1=toff_index1-1; end
% derivative of current toff candidate
derivativeEnergyCandidate = derivativeEnergy(toff_index1:toff_index2);
Nd = numel(derivativeEnergyCandidate);
falingFlag = false;
indexToffCandidate = 1;
% this section sets indexToffCandidate to the last local maximum of
% the derivative of the energy
for k=2:Nd
if derivativeEnergyCandidate(k-1) < derivativeEnergyCandidate(k)
falingFlag = false;
end
% find local maxima of the derivative of the energy
if derivativeEnergyCandidate(k-1) > derivativeEnergyCandidate(k)
if (falingFlag == false)
falingFlag = true;
% it is a local maximum
if debug && energydebug; text(k+toff_index1-1+T-1, 5*energyNormal(k+toff_index1-1), '&'); end
if (derivativeEnergyCandidate(k) > ...
derivativeEnergyCandidate(indexToffCandidate))
% set indexToffCandidate to the
indexToffCandidate = k;
end
end
end
end
% if derivativeEnergy has not any local maxima, use the energy minimum
% as the Toff candidate instead
if indexToffCandidate == 1
indexToffCandidate = Nd;
end
indexNewToffCandidates(i) = indexToffCandidate + toff_index1-1;
j = indexlocalMinimaEnergy(i);
end %i=1:numel(indexlocalminimaenergy)
% chooses one of the new toff candidates for re-adjusted toff based on cost function
a = T - R;
%b = lastCandid + indexNewToffCandidates - rpeak;
x = indexNewToffCandidates;
y = RR - a;
D = x/y;
% energy parameter of cost function
E = energyNormal(indexNewToffCandidates);
% cost function
costFunc = E + 1.5*D;
% new toff obtains by minimizing cost function
[~,indexCandid] = min(costFunc);
try
off = indexNewToffCandidates(indexCandid(1)) + T-1; % final toff candidate
catch
off = [];
return;
end
end