-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperimental.py
449 lines (356 loc) · 19.1 KB
/
experimental.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
class NumpyUtility:
def __init__(self):
'''Utilitys made with chatGPT for experimentation, few are working'''
def compress_dynamic_range(image):
# Find the 1st and 99th percentiles of the image
p1, p99 = np.percentile(image, (1, 99))
# Calculate the range of the image
img_range = p99 - p1
# Calculate the compression factor required to fit the image into 8-bit range
c = 1 / img_range
# Subtract the 1st percentile from the image and clip it to the [0, 1] range
new_image = np.clip((image - p1) * c, 0, 1)
# Convert the image to uint8 format
new_image = new_image.astype(np.uint8)
return new_image
def adjust_luminance(image, mask, amount):
# Convert the image to LAB color space
rgb_image = image.astype(np.float32) / 255.0
xyz_image = np.dot(rgb_image, np.array([[0.412453, 0.357580, 0.180423],
[0.212671, 0.715160, 0.072169],
[0.019334, 0.119193, 0.950227]]))
xyz_image = np.clip(xyz_image, 0, 1)
lab_image = np.zeros_like(xyz_image)
lab_image[..., 0] = 116.0 * np.power(xyz_image[..., 1], 1 / 3.0) - 16.0
lab_image[..., 1] = 500.0 * (np.power(xyz_image[..., 0], 1 / 3.0) - np.power(xyz_image[..., 1], 1 / 3.0))
lab_image[..., 2] = 200.0 * (np.power(xyz_image[..., 1], 1 / 3.0) - np.power(xyz_image[..., 2], 1 / 3.0))
# Apply the luminance adjustment to the masked area
lab_image[..., 0][mask == 1] = np.clip(lab_image[..., 0][mask == 1] * (1 + amount), 0, 100)
# Convert the image back to RGB color space
xyz_image[..., 1] = np.power((lab_image[..., 0] + 16.0) / 116.0, 3)
xyz_image[..., 0] = np.power((lab_image[..., 0] + 16.0) / 116.0 + lab_image[..., 1] / 500.0, 3)
xyz_image[..., 2] = np.power((lab_image[..., 0] + 16.0) / 116.0 - lab_image[..., 2] / 200.0, 3)
rgb_image = np.dot(xyz_image, np.array([[3.240479, -1.537150, -0.498535],
[-0.969256, 1.875992, 0.041556],
[0.055648, -0.204043, 1.057311]]))
# Convert the image back to the range [0, 255]
rgb_image = np.clip(rgb_image, 0, 1) * 255.0
rgb_image = rgb_image.astype(np.uint8)
return rgb_image
def gaussian_filter(mask, sigma):
"""
Apply Gaussian filtering to a binary mask.
Parameters:
mask (numpy.ndarray): Binary mask to apply filtering on.
sigma (float): Standard deviation of the Gaussian kernel.
Returns:
numpy.ndarray: Binary mask after Gaussian filtering.
"""
# Create a Gaussian kernel with the given sigma
ksize = int(2 * np.ceil(2 * sigma) + 1)
kernel = np.zeros((ksize, ksize))
for i in range(ksize):
for j in range(ksize):
kernel[i, j] = np.exp(-((i - ksize // 2) ** 2 + (j - ksize // 2) ** 2) / (2 * sigma ** 2))
kernel /= np.sum(kernel)
# Apply convolution with the kernel
filtered = np.zeros_like(mask, dtype='float32')
for i in range(mask.shape[0]):
for j in range(mask.shape[1]):
roi = mask[max(i - ksize // 2, 0):min(i + ksize // 2 + 1, mask.shape[0]),
max(j - ksize // 2, 0):min(j + ksize // 2 + 1, mask.shape[1])]
filtered[i, j] = np.sum(roi * kernel[:roi.shape[0], :roi.shape[1]])
return filtered
def binary_opening(mask, kernel):
"""
Perform binary morphological opening on a binary mask using a structuring element.
Parameters:
mask (numpy.ndarray): Binary mask to perform opening on.
kernel (numpy.ndarray): Structuring element used for opening.
Returns:
numpy.ndarray: Binary mask after morphological opening.
"""
# Create padding on all sides of the mask
pad_width = [(kernel.shape[i] // 2, kernel.shape[i] // 2) for i in range(kernel.ndim)]
mask_padded = np.pad(mask, pad_width, mode='constant', constant_values=0)
# Apply morphological erosion using the kernel
eroded = np.zeros_like(mask_padded)
for i in range(mask_padded.ndim):
eroded = np.maximum(eroded, np.apply_along_axis(np.roll, i, mask_padded, shift=-kernel.shape[i] // 2))
eroded = eroded[pad_width[0][0]:-pad_width[0][1], pad_width[1][0]:-pad_width[1][1]]
# Create padding on all sides of the eroded mask
pad_width = [(kernel.shape[i] // 2, kernel.shape[i] // 2) for i in range(kernel.ndim)]
eroded_padded = np.pad(eroded, pad_width, mode='constant', constant_values=0)
# Apply morphological dilation using the kernel
dilated = np.zeros_like(eroded_padded)
for i in range(eroded_padded.ndim):
dilated = np.minimum(dilated, np.apply_along_axis(np.roll, i, eroded_padded, shift=kernel.shape[i] // 2))
dilated = dilated[pad_width[0][0]:-pad_width[0][1], pad_width[1][0]:-pad_width[1][1]]
return dilated
def binary_closing(mask, kernel):
"""
Perform binary morphological closing on a binary mask using a structuring element.
Parameters:
mask (numpy.ndarray): Binary mask to perform closing on.
kernel (numpy.ndarray): Structuring element used for closing.
Returns:
numpy.ndarray: Binary mask after morphological closing.
"""
# Create padding on all sides of the mask
pad_width = [(kernel.shape[i] // 2, kernel.shape[i] // 2) for i in range(kernel.ndim)]
mask_padded = np.pad(mask, pad_width, mode='constant', constant_values=0)
# Apply morphological dilation using the kernel
dilated = np.zeros_like(mask_padded)
for i in range(mask_padded.ndim):
dilated = np.minimum(dilated, np.apply_along_axis(np.roll, i, mask_padded, shift=kernel.shape[i] // 2))
dilated = dilated[pad_width[0][0]:-pad_width[0][1], pad_width[1][0]:-pad_width[1][1]]
# Create padding on all sides of the dilated mask
pad_width = [(kernel.shape[i] // 2, kernel.shape[i] // 2) for i in range(kernel.ndim)]
dilated_padded = np.pad(dilated, pad_width, mode='constant', constant_values=0)
# Apply morphological erosion using the kernel
eroded = np.zeros_like(dilated_padded)
for i in range(dilated_padded.ndim):
eroded = np.maximum(eroded, np.apply_along_axis(np.roll, i, dilated_padded, shift=-kernel.shape[i] // 2))
eroded = eroded[pad_width[0][0]:-pad_width[0][1], pad_width[1][0]:-pad_width[1][1]]
return eroded
def create_shadow_mask(image, threshold=80, range_width=50):
lab_image = np.apply_along_axis(lambda x: np.dot([0.2126, 0.7152, 0.0722], x), 2, image).astype('float64')
luminance_range = np.max(lab_image) - np.min(lab_image)
if luminance_range < range_width:
range_width = luminance_range
threshold_min = np.min(lab_image) + range_width / 2
threshold_max = np.max(lab_image) - range_width / 2
if threshold < threshold_min:
threshold = threshold_min
elif threshold > threshold_max:
threshold = threshold_max
mask = np.logical_and(lab_image >= threshold - range_width / 2, lab_image <= threshold + range_width / 2)
if np.sum(mask) == 0:
return np.zeros_like(mask).astype(float)
else:
center_line = np.nanmean(np.where(mask, lab_image, np.nan), axis=0)
x = np.arange(center_line.shape[0])
slope = np.zeros(center_line.shape)
slope[1:-1] = (center_line[2:] - center_line[:-2]) / 2
slope[0] = slope[1]
slope[-1] = slope[-2]
intercept = center_line - slope * x
x = np.arange(image.shape[1]) # x-coordinates of pixels
y = np.arange(image.shape[0]) # y-coordinates of pixels
print(y)
x, y = np.meshgrid(x, y) # create 2D arrays of x- and y-coordinates
# compute distances from each pixel to the shadow line
dist = np.abs((y[:, :, np.newaxis] - slope[np.newaxis, np.newaxis, :] * x[:, :, np.newaxis]
- intercept[np.newaxis, np.newaxis, :]) / np.sqrt(1 + slope[np.newaxis, np.newaxis, :] ** 2))
print(dist)
# sigma = np.nanmedian(dist)/0.6745
# mask = np.exp(-0.5*(dist/sigma)**2)
return dist
def highpass_mask(img, cutoff, order=1):
# Calculate the Fourier transform of the image
fft_img = np.fft.fft2(img)
# Shift the zero-frequency component to the center of the spectrum
fft_img = np.fft.fftshift(fft_img)
# Construct a highpass filter in the Fourier domain
x, y = np.meshgrid(np.linspace(-1, 1, img.shape[1]), np.linspace(-1, 1, img.shape[0]))
r = np.sqrt(x ** 2 + y ** 2)
hp_filter = 1 - 1 / (1 + (cutoff / r) ** (2 * order))
# Apply the highpass filter to the Fourier transform of the image
fft_img_hp = fft_img * hp_filter
# Shift the zero-frequency component back to the corners of the spectrum
fft_img_hp = np.fft.ifftshift(fft_img_hp)
# Calculate the inverse Fourier transform of the highpass-filtered image
img_hp = np.fft.ifft2(fft_img_hp)
# Take the absolute value of the real part of the inverse Fourier transform
img_hp = np.abs(np.real(img_hp))
# Normalize the highpass-filtered image to the range [0, 1]
img_hp_norm = img_hp / np.max(img_hp)
# Invert the highpass-filtered image to create a highpass mask
mask = 1 - img_hp_norm
return mask
def cvtColor(hsv_img):
# Assuming you have an HSV image loaded in the variable 'hsv_img'
# Let's convert the image back to RGB color space
h, s, v = np.split(hsv_img, 3, axis=-1)
h = h.reshape(h.shape[:2])
s = s.reshape(s.shape[:2])
v = v.reshape(v.shape[:2])
c = v * s
x = c * (1 - np.abs((h / 60) % 2 - 1))
m = v - c
z = np.zeros_like(h)
# Set up the RGB channels according to the hue value
rgb_img = np.dstack((
np.where((0 <= h) & (h < 60), c,
np.where((120 <= h) & (h < 180), z, np.where((240 <= h) & (h < 300), x, m))),
np.where((300 <= h), c, np.where((60 <= h) & (h < 120), x, np.where((180 <= h) & (h < 240), c, m))),
np.where((0 <= h) & (h < 360), v, m)
))
return rgb_img
def saturate(img, amount):
hsv_img = np.copy(img)
hsv_img = np.asarray(hsv_img, dtype=np.float32) / 255.0 # Normalize pixel values
hsv_img = np.clip(hsv_img, 0, 1) # Clip values to the range [0, 1]
hsv_img = np.squeeze(cv2.cvtColor(hsv_img, cv2.COLOR_RGB2HSV_FULL)) # Convert to HSV
# Let's adjust the saturation of the image
saturation_factor = 1.5 # Adjust this value to your preference
hsv_img[..., 1] *= saturation_factor
# Now let's convert the image back to RGB color space
hsv_img = np.clip(hsv_img, 0, 255) # Clip values to the range [0, 255]
hsv_img = np.asarray(hsv_img, dtype=np.uint8) # Convert back to uint8
rgb_img = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2RGB_FULL) # Convert back to RGB
# The resulting image with increased saturation is stored in the 'rgb_img' variable
def rgb2ycbcr(rgb_img):
# Create the conversion matrix for RGB to YCbCr
conv_mat = np.array([[0.299, 0.587, 0.114],
[-0.168736, -0.331264, 0.5],
[0.5, -0.418688, -0.081312]])
# Reshape the input image to a 2D array of pixels
pixels = rgb_img.reshape(-1, 3)
# Apply the conversion matrix to the pixels
ycbcr_pixels = np.dot(pixels, conv_mat.T)
# Reshape the converted pixels back into the original image shape
ycbcr_img = ycbcr_pixels.reshape(rgb_img.shape)
# Convert the image data type to uint8 and return it
return ycbcr_img.astype(np.uint8)
def ycbcr2rgb(ycbcr_img):
# Create the conversion matrix for YCbCr to RGB
conv_mat = np.array([[1.0, 0.0, 1.402],
[1.0, -0.344136, -0.714136],
[1.0, 1.772, 0.0]])
# Reshape the input image to a 2D array of pixels
pixels = ycbcr_img.reshape(-1, 3)
# Apply the conversion matrix to the pixels
rgb_pixels = np.dot(pixels, conv_mat.T)
# Reshape the converted pixels back into the original image shape
rgb_img = rgb_pixels.reshape(ycbcr_img.shape)
# Convert the image data type to uint8 and return it
return rgb_img.astype(np.uint8)
def adjust_luminance(img, mask, adjustment):
# Convert the input image to the YCbCr color space
img = (255.0 * img).astype(np.uint8)
mask = (255.0 * mask).astype(np.uint8)
ycbcr_img = rgb2ycbcr(img)
ycbcr_mask = rgb2ycbcr(mask)
print(ycbcr_mask)
print(ycbcr_img)
plot_histogram(ycbcr_img, title="ycbcr")
plot_histogram(ycbcr_mask, title="ycmask")
# Separate the luminance channel (Y)
y_channel = ycbcr_img[..., 0]
y_channel_mask = ycbcr_mask[..., 0]
# Apply the adjustment to the luminance channel using the mask
y_adjusted = np.clip(y_channel + (adjustment * y_channel_mask), 0, 255).astype(np.uint8)
# Replace the original luminance channel with the adjusted one
ycbcr_img[..., 0] = y_adjusted
# Convert the image back to the RGB color space and return it
return ycbcr2rgb(ycbcr_img)
def tonemap_reinhard(image, gamma=2.2, intensity=0.18, light_adapt=0.8):
"""
Tonemaps the input HDR image using the Reinhard algorithm.
Args:
image: The input HDR image as a NumPy array.
gamma: The gamma correction value to apply to the output image.
intensity: The target scene brightness.
light_adapt: The adaptation rate for the brightness.
Returns:
The tonemapped output image as a NumPy array.
"""
# Convert the image to floating point RGB.
#image = image.astype(np.float32)
# Compute the log average luminance.
lum = np.exp(np.mean(np.log(0.0001 + image)))
# Normalize the image by the log average luminance.
image /= lum
# Apply the Reinhard tonemapping algorithm.
mapped = np.zeros_like(image)
mapped = intensity * (mapped / np.max(mapped))
mapped = light_adapt * (mapped * (1 + mapped / np.max(mapped) ** 2)) / (1 + mapped)
mapped *= lum
# Apply gamma correction to the tonemapped image.
mapped = np.power(np.clip(mapped, 0, 1), 1 / gamma)
# Convert the tonemapped image to 8-bit RGB.
mapped = (255 * mapped).astype(np.uint8)
return mapped
def f(t):
# Helper function to compute the nonlinear transformation function for the LAB color space
delta = 6.0 / 29.0
t_thresh = delta ** 3
return np.where(t > t_thresh, t ** (1 / 3), (1 / 3) * (29 / 6) ** 2 * t + 4 / 29)
def numpy_lab2rgb(lab_img):
XYZ = np.zeros_like(lab_img, dtype=np.float32)
XYZ[..., 0] = (lab_img[..., 0] + 16.0) / 116.0
XYZ[..., 1] = (lab_img[..., 1] / 500.0) + XYZ[..., 0]
XYZ[..., 2] = XYZ[..., 0] - (lab_img[..., 2] / 200.0)
mask = XYZ > 0.2068966
XYZ[mask] = XYZ[mask] ** 3
XYZ[~mask] = (XYZ[~mask] - 16.0 / 116.0) / 7.787
D50 = np.array([0.9642, 1.0, 0.8249], dtype=np.float32)
RGB_linear = np.dot(XYZ,
np.array([[3.2406, -1.5372, -0.4986], [-0.9689, 1.8758, 0.0415], [0.0557, -0.2040, 1.0570]],
dtype=np.float32).T)
RGB_linear = np.clip(RGB_linear, 0.0, 1.0)
RGB_linear_D50 = RGB_linear / D50
sRGB = np.where(RGB_linear_D50 <= 0.0031308, 12.92 * RGB_linear_D50,
1.055 * (RGB_linear_D50 ** (1.0 / 2.4)) - 0.055)
sRGB = np.clip(sRGB, 0.0, 1.0)
return (RGB_linear_D50 * 255).astype(np.uint8)
def numpy_split_lab(lab_img):
L, a, b = np.rollaxis(lab_img, axis=-1)
return L, a, b
def numpy_merge_lab(l_channel_adjusted, a_channel, b_channel):
merged_lab = np.dstack((l_channel_adjusted, a_channel, b_channel))
return merged_lab
def rgb2lab(img):
# Convert the RGB image to a float array with values between 0 and 1
img = img.astype(np.float32) / 255.0
# Convert the RGB image to the XYZ color space
# using the transformation matrix specified by the CIE
# (https://en.wikipedia.org/wiki/CIE_1931_color_space)
r, g, b = np.split(img, 3, axis=2)
x = 0.412453 * r + 0.357580 * g + 0.180423 * b
y = 0.212671 * r + 0.715160 * g + 0.072169 * b
z = 0.019334 * r + 0.119193 * g + 0.950227 * b
# Convert the XYZ image to the LAB color space using the D50 white point
# (https://en.wikipedia.org/wiki/Lab_color_space#Conversion_from_XYZ_to_Lab)
x /= 0.950456
z /= 1.088754
l = 116.0 * f(y) - 16.0
a = 500.0 * (f(x) - f(y))
b = 200.0 * (f(y) - f(z))
# Stack the LAB channels back into a single image and return it
return np.concatenate((l, a, b), axis=2)
def apply_luminance_mask_lab(img, mask):
# Convert the image to the LAB color space
lab_img = rgb2lab(img)
print(lab_img)
lab_mask = rgb2lab(mask)
print(lab_mask)
# Split the LAB image into its channels
l_channel, a_channel, b_channel = numpy_split_lab(lab_img)
l_channel_mask, a_channel, b_channel = numpy_split_lab(lab_mask)
# Apply the mask to the luminance channel
l_channel_adjusted = l_channel + l_channel_mask # np.where(l_channel_mask > 0, l_channel - 50, l_channel)
# Merge the adjusted channels back into a LAB image
lab_img_adjusted = numpy_merge_lab(l_channel_adjusted, a_channel, b_channel)
# Convert the adjusted image back to the RGB color space and return it
return numpy_lab2rgb(lab_img_adjusted)
def rgb2lab(img):
# Convert the RGB image to a float array with values between 0 and 1
img = img.astype(np.float32) / 255.0
# Convert the RGB image to the XYZ color space
# using the transformation matrix specified by the CIE
# (https://en.wikipedia.org/wiki/CIE_1931_color_space)
r, g, b = np.split(img, 3, axis=2)
x = 0.412453 * r + 0.357580 * g + 0.180423 * b
y = 0.212671 * r + 0.715160 * g + 0.072169 * b
z = 0.019334 * r + 0.119193 * g + 0.950227 * b
# Convert the XYZ image to the LAB color space using the D50 white point
# (https://en.wikipedia.org/wiki/Lab_color_space#Conversion_from_XYZ_to_Lab)
x /= 0.950456
z /= 1.088754
l = 116.0 * f(y) - 16.0
a = 500.0 * (f(x) - f(y))
b = 200.0 * (f(y) - f(z))
# Stack the LAB channels back into a single image and return it
return np.concatenate((l, a, b), axis=2)