-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
512 lines (512 loc) · 19.7 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
latitude=paste(min(decimallat), "-", max(decimallat)),
longitude=paste(min(decimallon), "-", max(decimallon)),
PC1=mean(PC1),
PC2=mean(PC2),
list.IDs=str_c(catalognum, collapse = ","))%>%
write.csv(., file.path("./", paste0(toString(title.input),"_table.csv")))
}
plot.PCA.Results <- function(data.frame.graph.pca, title.input, PC.lables.input) {
PCA.ggplot.data <- left_join(data.frame.graph.pca, unique(colors),
by = c("decimallat", "decimallon"))%>%arrange(annotation)
PC.lables.use<-PC.lables.input
pc1.label<-paste0("PC1 ",(PC.lables.use[1]*100)%>%round(., digits=2), "%")
pc2.label<-paste0("PC2 ",(PC.lables.use[2]*100)%>%round(., digits=2), "%")
Final.PCA.plot <- ggplot(data = PCA.ggplot.data, aes(x = PC1, y = PC2, colour = color)) +
geom_point(
data = PCA.ggplot.data,
aes(
x = PC1, y = PC2,
colour = color,
shape = ecoregion_label
),
size = 4,
stroke=2,
#position = position_jitter(width = .5, height = .5),
position = position_jitterdodge(jitter.width = .9, jitter.height = .9, dodge.width=.9),
alpha = 1
) +
scale_colour_identity() +
scale_shape_manual(values = c("Northern California Coast Ranges and Coast"=16,
"Central California Coast Ranges and Coast"=17,
"Klamath Mountains"=18,
"Southern California Coast"=19,
"Central Valley"=3,
"Southern California Mountains and Valleys"=4,
"Sierra Nevada"=5,
"Southern Cascades"=6,
"Mojave_Sonoran"=8,
"Modoc Plateau"=1,
"Basin"=11,
"Colorado Desert"=0
))+
labs(x=pc1.label, y=pc2.label)+
theme_classic(18) +
theme(legend.position = "none")
Final.PCA.plot +
ggtitle(toString(title.input))->save.graph
ggexport(save.graph, filename=toString(paste(getwd(), paste0(title.input,"_PCAgraph.pdf"), sep="/")))
Final.PCA.plot +
ggtitle(toString(title.input)) %>%
return()
}
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# UI ---------------------------------------------------------------------------
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Define UI for data upload app ----
ui <- dashboardPage(
# App title ----
dashboardHeader(title = "BCEEnet"),
# Sidebar layout with input and output definitions ----
dashboardSidebar(
# Input: Select a file ----
fileInput("file1", "Choose Fasta File",
multiple = TRUE,
accept = c("text/csv",
"text/comma-separated-values,text/plain",
".fasta",
".fa")),
# Horizontal line ----
tags$hr(),
textInput("graph_title", label = h3("Type Graph Title Here"), value = "Enter text...")
),
dashboardBody(
fluidRow(
mainPanel(plotOutput(outputId = "pca_plot"))
),
fluidRow(
# Output: Data file ----
mainPanel(DTOutput(outputId = "pca_table_output"))
)
)
)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Server -----------------------------------------------------------------------
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Define server logic to read selected file ----
server <- function(input, output) {
output$pca_plot <- renderPlot({
if(!is.null(input$file1$datapath)){
matched.ID.list <- get.potential.voucher.numbers(input$file1$datapath) %>%
match.vernet.to.fasta()
PCA.dataframe <- fasta.file.subset(input$file1$datapath,matched.ID.list) %>%
make.pca.data.frame()
PCA.results <- run.pca.analysis(PCA.dataframe,matched.ID.list,fasta.file.subset(input$file1$datapath,matched.ID.list))
graph.labels <- PC.Labels(PCA.dataframe,matched.ID.list,fasta.file.subset(input$file1$datapath,matched.ID.list))
output.table <- make.table.of.ecoregiongroups(PCA.results, input$graph_title)
plot.PCA.Results(PCA.results, input$graph_title, PC.lables.input=graph.labels)
}
})
output$pca_table_output <- renderDataTable({
if(!is.null(input$file1$datapath)){
matched.ID.list <- get.potential.voucher.numbers(input$file1$datapath) %>%
match.vernet.to.fasta()
PCA.dataframe <- fasta.file.subset(input$file1$datapath,matched.ID.list) %>%
make.pca.data.frame()
PCA.results <- run.pca.analysis(PCA.dataframe,matched.ID.list,fasta.file.subset(input$file1$datapath,matched.ID.list))
graph.labels <- PC.Labels(PCA.dataframe,matched.ID.list,fasta.file.subset(input$file1$datapath,matched.ID.list))
output.table <- make.table.of.ecoregiongroups(PCA.results, input$graph_title)
datatable(output.table, escape = FALSE,
extensions = c("Buttons"),
options = list(
"dom" = 'tB',
buttons = list(list(extend = 'copy', title = NULL)),
pageLength = 100),
rownames = FALSE)
}
})
}
# Run the app ----
# shinyApp(ui, server)
#force packages#
devtools::install_github("r-lib/conflicted")
library(shiny)
library(shinydashboard)
library(base)
library(datasets)
library(graphics)
library(grDevices)
library(methods)
library(stats)
library(seqinr)
library(tidyverse)
library(dplyr)
library(magrittr)
library(factoextra)
library(stringr)
library(stringi)
library(utils)
library(ggrepel)
library(fuzzyjoin)
library(RColorBrewer)
library(scales)
library(sjmisc)
library(ggpubr)
library(DT)
library(BceenetPCAPackage)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Functions --------------------------------------------------------------------
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
get.potential.voucher.numbers<-function(file.path.fasta){
#read in Fasta file
read.fasta(file = file.path(file.path.fasta))->temp.fasta
#Get the headers and make into dataframe
getAnnot(temp.fasta) %>%
unlist() %>%
as.data.frame() -> annotation.list
#Change column name
names(annotation.list) <- "annotation"
#Create new column
annotation.list$potential.catalognumber<-NULL
#for loop to grab potential voucher number
for(i in 1:nrow(annotation.list)){
# the annotations are sometimes seperated by spaces and somtiems by under scores. this section and the following if else statment strips the voucher
# numbers depending on the seperator
scan(text = annotation.list$annotation[i], what = "", sep = c(""), quiet=TRUE)%>%
as.data.frame()%>%nrow()->seperator.type
if(seperator.type>1){
scan(text = annotation.list$annotation[i], what = "", sep = c(""), quiet=TRUE)%>%
as.data.frame()%>%
dplyr::rename("potential.catalognumber"=".")%>%
filter(!stringr::str_detect(potential.catalognumber, ">"),
!stringr::str_detect(potential.catalognumber, "-"),
!stringr::str_detect(potential.catalognumber, "\\("),
stringr::str_detect(potential.catalognumber, "\\d"))%>%
dplyr::slice(1)%>%
as.character()->potential.catalognumber
annotation.list$potential.catalognumber[i]<-potential.catalognumber
}
else{scan(text = annotation.list$annotation[i], what = "", sep = c("_"), quiet=TRUE)%>%
as.data.frame()%>%
dplyr::rename("potential.catalognumber"=".")%>%
filter(!stringr::str_detect(potential.catalognumber, ">"),
!stringr::str_detect(potential.catalognumber, "-"),
!stringr::str_detect(potential.catalognumber, "\\("),
stringr::str_detect(potential.catalognumber, "MVZ"))%>%
dplyr::slice(1)%>%
as.character()->potential.catalognumber
annotation.list$potential.catalognumber[i]<-potential.catalognumber
}
}
#make new column to remove any prefix from the voucher number and eliminate any straggler number possibilities
annotation.list%<>%
dplyr::mutate(catalog.number.only=str_extract(potential.catalognumber, "[0-9]+"))%>%
filter(str_length(catalog.number.only)>3)
return(annotation.list)
}
match.vernet.to.fasta<-function(input.file){
input.file->annotation.list
#grab only relevant columns from ecoregion dataframe
lat.long<-ecoregions%>%
dplyr::select(scientific, catalognum, decimallat,decimallon,New_label)%>%
dplyr::mutate(catalog.number.only=str_extract(catalognum, "(?<=:)[0-9]+"))%>%
dplyr::mutate(catalog.number.only=ifelse(is.na(catalog.number.only)==TRUE, catalognum, catalog.number.only))%>%
unique()
#make comparison lists to use in for loop
does.this.list<-lat.long$catalognum
contain.these.values<-annotation.list$catalog.number.only
#initialize data frame for loop
matching.id.data.frame<<-data.frame(scientific=character(),
catalognum=character(),
decimallat=numeric(),
decimallon=numeric(),
New_label=character(),
catalog.number.only=numeric(),
annotation=character(),
potential.catalognumber=character(),
catalog.number.only=numeric())
#for loop asking whether the lat long list from vertnet contains the stripped catalog/voucher numbers from the fasta files.
for (i in 1:length(does.this.list)) {
for (a in 1:length(contain.these.values)) {
str_contains(does.this.list[i], contain.these.values[a]) -> link
if (link == TRUE) {
cbind(lat.long[i, ], annotation.list[a, ]) -> int
matching.id.data.frame <<- rbind(matching.id.data.frame, int)
}
}
}
#rename columns and reorder columns
names(matching.id.data.frame)<-c("scientific","catalognum","decimallat","decimallon","ecoregion_label","vernet.catalog.number.only",
"annotation","potential.catalognumber","genbank.catalog.number.only")
#Make unique columns for genus species and subspecies
matching.id.data.frame$Genus<-NA
matching.id.data.frame$Species<-NA
matching.id.data.frame$subspecies<-NA
matching.id.data.frame$matching<-NA
#for loop to grab genus species and subspecies, and to double check that the matched IDs are with the correct genus.
for (i in 1:nrow(matching.id.data.frame)) {
### Make columns for genus species and subspecies
scan(text = matching.id.data.frame$scientific[i], what = "", quiet = TRUE)[1] -> genus
scan(text = matching.id.data.frame$scientific[i], what = "", quiet = TRUE)[2] -> species
scan(text = matching.id.data.frame$scientific[i], what = "", quiet = TRUE)[3] -> subspecies
## print(genus)
## print(species)
## print(subspecies)
matching.id.data.frame$Genus[i] <- genus
matching.id.data.frame$Species[i] <- species
matching.id.data.frame$subspecies[i] <- subspecies
if(str_contains(matching.id.data.frame$annotation[i],matching.id.data.frame$Genus[i])==TRUE){
matching.id.data.frame$matching[i] <- 1
}
else if(matching.id.data.frame$Genus[i]=="Artemisiospiza" & str_contains(matching.id.data.frame$annotation[i],"Amphispiza")){
matching.id.data.frame$matching[i] <- 1
}
else if(matching.id.data.frame$Genus[i]=="Cyanocitta" & str_contains(matching.id.data.frame$annotation[i],"Cyanosita")){
matching.id.data.frame$matching[i] <- 1
}
else{matching.id.data.frame$matching[i] <- 0
}
}
matching.id.data.frame%>%
dplyr::filter(matching==1)%>%
dplyr::select(scientific:ecoregion_label, annotation)->Matched.vertnet.fasta.samples
return(Matched.vertnet.fasta.samples)
}
fasta.file.subset<-function(file.path.fasta, list.matching.annotations){
read.fasta(file = file.path(file.path.fasta))->temp.fasta
list.matching.annotations->keep.list
my_fasta_sub <- temp.fasta[str_contains(keep.list$annotation,names(temp.fasta))==TRUE]
return(my_fasta_sub)
}
make.pca.data.frame<-function(subsetted.fasta){
fasta.data<-as.alignment(nb = length(subsetted.fasta), nam = names(subsetted.fasta),
seq = getSequence(subsetted.fasta), com = NA)
####get number of individuals in dataset####
num.inds<-as.numeric(fasta.data$nb)
#print(num.inds)
####get number of loci in the data####
num.loci<-str_length(fasta.data$seq[[2]])
#head(fasta.data)
#####for loop to take the strings of ATCG's for each individual and: #####
####1) break them into single characters, ######
####2) convert them to numbers######
####and 3) calculate proportion of individuals with each nucleotide ######
store.df<<-matrix(ncol = num.loci, nrow = 0)%>%as.data.frame()
for(i in 1:num.inds){
ind.sample<-str_split(unlist(fasta.data$seq[[i]]), pattern="")%>%unlist()
s2n(ind.sample)%>%return()
store.df<<-rbind(store.df,s2n(ind.sample))
rownames(store.df)[i]<<-fasta.data$nam[[i]]
}
colnames(store.df)<- paste0("position", seq(1,900))
count.variants<-function(data){
zero<-0
one<-0
two<-0
three<-0
missing<-0
for(i in 1:length(data)){
if(is.na(data[i])==TRUE){missing<-missing+1}
else if(data[i]==0){zero<-zero+1}
else if(data[i]==1){one<-one+1}
else if(data[i]==2){two<-two+1}
else if(data[i]==3){three<-three+1}
}
return(paste(zero, one, two, three, missing))
}
lapply(store.df, count.variants)%>%as.matrix()->count.of.SNPS
rownames(count.of.SNPS)->positions
count.of.SNPS.seperated<-data.frame(position=as.character(positions),
count.A=as.numeric(0),
count.T=as.numeric(0),
count.C=as.numeric(0),
count.G=as.numeric(0))
for(i in 1:nrow(count.of.SNPS)){
str_split(unlist(count.of.SNPS[i]), pattern=" ")%>%
unlist()%>%as.data.frame()->counts.seperated
count.of.SNPS.seperated$count.A[i]<-as.numeric(counts.seperated[1,1]) #zero is A, which corresponds to row 1
count.of.SNPS.seperated$count.T[i]<-as.numeric(counts.seperated[4,1]) #Three is T, which corresonds to row 4
count.of.SNPS.seperated$count.C[i]<-as.numeric(counts.seperated[2,1]) #one is C, which corresponds to row 2
count.of.SNPS.seperated$count.G[i]<-as.numeric(counts.seperated[3,1]) #two is G, which corresponds to row 3
}
print(tail(count.of.SNPS.seperated))
count.of.SNPS.seperated%<>%
mutate(individuals=num.inds,
prop.A=(count.A/num.inds), #zero is A
prop.T=(count.T/num.inds), #Three is T
prop.C=(count.C/num.inds), #one is C
prop.G=(count.G/num.inds)) #two is G
### filter loci####
count.of.SNPS.seperated%>%
dplyr::select("position", "prop.A", "prop.T", "prop.C", "prop.G")%>%
pivot_longer(cols=prop.A:prop.G,
names_to = "Nucleotide",
values_to = "Proportion")%>%
group_by(position)%>%
dplyr::summarise(similarity=max(Proportion))%>%
filter(similarity<=.95)->list.of.positions.to.keep.for.PCA
####PCA####
#select columns
store.df%>%
dplyr::select(list.of.positions.to.keep.for.PCA$position)->pca.graph.data
#dplyr::select(starts_with("X"))->pca.graph.data
sapply(pca.graph.data, replace_na, value=as.numeric(.01))%>%as.data.frame()->pca.graph.data
rownames(pca.graph.data)<-fasta.data$nam
#print(pca.graph.data)
return(pca.graph.data)
}
run.pca.analysis<-function(fasta.to.pca.data, matched.vertnet.and.fasta,subsetted.fasta){
#Step 1
fasta.to.pca.data->pca.graph.data
subsetted.fasta->subset.names
#Step 2
locus.pca<-prcomp(as.data.frame(pca.graph.data))
#Step 3
row.names(locus.pca$x)<-names(subset.names)
#Step 4
PCA.ggplot.data<-locus.pca$x[,c(1:2)]
PCA.ggplot.data%<>%
as.data.frame()%>%
rownames_to_column("FASTA.ID")
#Step 5
matched.vertnet.and.fasta%>%
mutate(FASTA.ID=str_extract(matched.vertnet.and.fasta$annotation, pattern = "(?<=>)[^/ /]+"))->matched.vernet.and.fasta.forjoining
PCA.ggplot.data<-left_join(PCA.ggplot.data,matched.vernet.and.fasta.forjoining, by=c("FASTA.ID"))%>%
dplyr::select(annotation, scientific:ecoregion_label, PC1, PC2)
return(PCA.ggplot.data)
}
PC.Labels<-function(fasta.to.pca.data, matched.vertnet.and.fasta,subsetted.fasta){
fasta.to.pca.data->pca.graph.data
subsetted.fasta->subset.names
locus.pca<-prcomp(as.data.frame(pca.graph.data))
summary(locus.pca)["importance"]%>%as.data.frame()->summary.out
summary.out["Proportion of Variance", 1:2]%>%as.matrix()->Graph.labels
return(Graph.labels)
}
make.table.of.ecoregiongroups<-function(data.frame.graph.pca, title.input){
data.frame.graph.pca->PCA.ggplot.data
PCA.ggplot.data%>%
group_by(ecoregion_label)%>%
dplyr::summarise(number.inds=n(),
latitude=paste(min(decimallat), "-", max(decimallat)),
longitude=paste(min(decimallon), "-", max(decimallon)),
PC1=mean(PC1),
PC2=mean(PC2),
list.IDs=str_c(catalognum, collapse = ","))%>%
write.csv(., file.path("./", paste0(toString(title.input),"_table.csv")))
}
plot.PCA.Results <- function(data.frame.graph.pca, title.input, PC.lables.input) {
PCA.ggplot.data <- left_join(data.frame.graph.pca, unique(colors),
by = c("decimallat", "decimallon"))%>%arrange(annotation)
PC.lables.use<-PC.lables.input
pc1.label<-paste0("PC1 ",(PC.lables.use[1]*100)%>%round(., digits=2), "%")
pc2.label<-paste0("PC2 ",(PC.lables.use[2]*100)%>%round(., digits=2), "%")
Final.PCA.plot <- ggplot(data = PCA.ggplot.data, aes(x = PC1, y = PC2, colour = color)) +
geom_point(
data = PCA.ggplot.data,
aes(
x = PC1, y = PC2,
colour = color,
shape = ecoregion_label
),
size = 4,
stroke=2,
#position = position_jitter(width = .5, height = .5),
position = position_jitterdodge(jitter.width = .9, jitter.height = .9, dodge.width=.9),
alpha = 1
) +
scale_colour_identity() +
scale_shape_manual(values = c("Northern California Coast Ranges and Coast"=16,
"Central California Coast Ranges and Coast"=17,
"Klamath Mountains"=18,
"Southern California Coast"=19,
"Central Valley"=3,
"Southern California Mountains and Valleys"=4,
"Sierra Nevada"=5,
"Southern Cascades"=6,
"Mojave_Sonoran"=8,
"Modoc Plateau"=1,
"Basin"=11,
"Colorado Desert"=0
))+
labs(x=pc1.label, y=pc2.label)+
theme_classic(18) +
theme(legend.position = "none")
Final.PCA.plot +
ggtitle(toString(title.input))->save.graph
ggexport(save.graph, filename=toString(paste(getwd(), paste0(title.input,"_PCAgraph.pdf"), sep="/")))
Final.PCA.plot +
ggtitle(toString(title.input)) %>%
return()
}
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# UI ---------------------------------------------------------------------------
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Define UI for data upload app ----
ui <- dashboardPage(
# App title ----
dashboardHeader(title = "BCEEnet"),
# Sidebar layout with input and output definitions ----
dashboardSidebar(
# Input: Select a file ----
fileInput("file1", "Choose Fasta File",
multiple = TRUE,
accept = c("text/csv",
"text/comma-separated-values,text/plain",
".fasta",
".fa")),
# Horizontal line ----
tags$hr(),
textInput("graph_title", label = h3("Type Graph Title Here"), value = "Enter text...")
),
dashboardBody(
fluidRow(
mainPanel(plotOutput(outputId = "pca_plot"))
),
fluidRow(
# Output: Data file ----
mainPanel(DTOutput(outputId = "pca_table_output"))
)
)
)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Server -----------------------------------------------------------------------
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Define server logic to read selected file ----
server <- function(input, output) {
output$pca_plot <- renderPlot({
if(!is.null(input$file1$datapath)){
matched.ID.list <- get.potential.voucher.numbers(input$file1$datapath) %>%
match.vernet.to.fasta()
PCA.dataframe <- fasta.file.subset(input$file1$datapath,matched.ID.list) %>%
make.pca.data.frame()
PCA.results <- run.pca.analysis(PCA.dataframe,matched.ID.list,fasta.file.subset(input$file1$datapath,matched.ID.list))
graph.labels <- PC.Labels(PCA.dataframe,matched.ID.list,fasta.file.subset(input$file1$datapath,matched.ID.list))
output.table <- make.table.of.ecoregiongroups(PCA.results, input$graph_title)
plot.PCA.Results(PCA.results, input$graph_title, PC.lables.input=graph.labels)
}
})
output$pca_table_output <- renderDataTable({
if(!is.null(input$file1$datapath)){
matched.ID.list <- get.potential.voucher.numbers(input$file1$datapath) %>%
match.vernet.to.fasta()
PCA.dataframe <- fasta.file.subset(input$file1$datapath,matched.ID.list) %>%
make.pca.data.frame()
PCA.results <- run.pca.analysis(PCA.dataframe,matched.ID.list,fasta.file.subset(input$file1$datapath,matched.ID.list))
graph.labels <- PC.Labels(PCA.dataframe,matched.ID.list,fasta.file.subset(input$file1$datapath,matched.ID.list))
output.table <- make.table.of.ecoregiongroups(PCA.results, input$graph_title)
datatable(output.table, escape = FALSE,
extensions = c("Buttons"),
options = list(
"dom" = 'tB',
buttons = list(list(extend = 'copy', title = NULL)),
pageLength = 100),
rownames = FALSE)
}
})
}
# Run the app ----
# shinyApp(ui, server)
View(matching.id.data.frame)
View(store.df)
runApp('BCEENet_LandscapeGenomicsCURE_vmerge.R')
install.packages("fontawesome")
install.packages(c("htmltools", "rasterVis", "rgbif", "rgdal", "rgeos", "shiny", "sp"))
install.packages(c("htmltools", "rasterVis", "rgbif", "rgdal", "rgeos", "shiny", "sp"))
install.packages(c("htmltools", "rasterVis", "rgbif", "rgdal", "rgeos", "shiny", "sp"))
install.packages(c("htmltools", "rasterVis", "rgbif", "rgdal", "rgeos", "shiny", "sp"))
install.packages(c("htmltools", "rasterVis", "rgbif", "rgdal", "rgeos", "shiny", "sp"))
install.packages(c("htmltools", "rasterVis", "rgbif", "rgdal", "rgeos", "shiny", "sp"))
View(match.vernet.to.fasta)
library(tidyverse)
library(shiny); runApp('BCEENet_LandscapeGenomicsCURE_vmerge.R')
library(shiny); runApp('BCEENet_LandscapeGenomicsCURE_vmerge.R')