-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPA1_template.html
622 lines (591 loc) · 197 KB
/
PA1_template.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="author" content="Bryan Murphy" />
<meta name="date" content="2023-04-03" />
<title>JHU5, Assignment 1</title>
<script>// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
// be compatible with the behavior of Pandoc < 2.8).
document.addEventListener('DOMContentLoaded', function(e) {
var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
var i, h, a;
for (i = 0; i < hs.length; i++) {
h = hs[i];
if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
a = h.attributes;
while (a.length > 0) h.removeAttribute(a[0].name);
}
});
</script>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } code span.at { color: #7d9029; } code span.bn { color: #40a070; } code span.bu { color: #008000; } code span.cf { color: #007020; font-weight: bold; } code span.ch { color: #4070a0; } code span.cn { color: #880000; } code span.co { color: #60a0b0; font-style: italic; } code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } code span.do { color: #ba2121; font-style: italic; } code span.dt { color: #902000; } code span.dv { color: #40a070; } code span.er { color: #ff0000; font-weight: bold; } code span.ex { } code span.fl { color: #40a070; } code span.fu { color: #06287e; } code span.im { color: #008000; font-weight: bold; } code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } code span.kw { color: #007020; font-weight: bold; } code span.op { color: #666666; } code span.ot { color: #007020; } code span.pp { color: #bc7a00; } code span.sc { color: #4070a0; } code span.ss { color: #bb6688; } code span.st { color: #4070a0; } code span.va { color: #19177c; } code span.vs { color: #4070a0; } code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } a.sourceLine {
pointer-events: auto;
}
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
for (var j = 0; j < rules.length; j++) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") continue;
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') continue;
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">@font-face{font-family:"Open Sans";font-style:normal;font-weight:400;src:local("Open Sans"),local("OpenSans"),url(data:font/woff;base64,d09GRgABAAAAAE8YABIAAAAAhWwAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABHREVGAAABlAAAABYAAAAWABAA3UdQT1MAAAGsAAAADAAAAAwAFQAKR1NVQgAAAbgAAABZAAAAdN3O3ptPUy8yAAACFAAAAF8AAABgoT6eyWNtYXAAAAJ0AAAAmAAAAMyvDbOdY3Z0IAAAAwwAAABZAAAAog9NGKRmcGdtAAADaAAABJsAAAe0fmG2EWdhc3AAAAgEAAAAEAAAABAAFQAjZ2x5ZgAACBQAADWFAABReBn1yj5oZWFkAAA9nAAAADYAAAA293bipmhoZWEAAD3UAAAAHwAAACQNzAapaG10eAAAPfQAAAIIAAADbLTLWYhrZXJuAAA//AAAChcAAB6Qo+uk42xvY2EAAEoUAAABuQAAAbz3ewp/bWF4cAAAS9AAAAAgAAAAIAJ2AgpuYW1lAABL8AAAAKwAAAEyFNwvSnBvc3QAAEycAAABhgAAAiiYDmoRcHJlcAAATiQAAADyAAABCUO3lqQAAQAAAAwAAAAAAAAAAgABAAAA3AABAAAAAQAAAAoACgAKAAB4AR3HNcJBAQDA8d+rLzDatEXOrqDd4S2ayUX1beTyDwEyyrqCbXrY+xPD8ylAsF0tUn/4nlj89Z9A7+tETl5RXdNNZGDm+vXYXWjgLDRzEhoLBAYv0/0NHAAAAHgBY2Bm2cY4gYGVgYN1FqsxAwOjPIRmvsiQxviRg4mJm42NmZWFiYnlAQPTewcGhWgGBgYNBiAwdAx2ZgAK/P/LJv9PhKGFo5cpQoGBcT5IjsWDdRuQUmBgBgD40BA5AHgBY2BgYGRgBmIGBh4GFoYDQFqHQYGBBcjzYPBkqGM4zXCe4T+jIWMw0zGmW0x3FEQUpBTkFJQU1BSsFFwUShTWKAn9/w/UpQBU7cWwgOEMwwWg6iCoamEFCQUZsGpLhOr/jxn6/z/6f5CB9//e/z3/c/7++vv877MHGx6sfbDmwcoHyx5MedD9IOGByr39QHeRAABARzfieAFjE2EQZ/Bj3QYkS1m3sZ5lQAEsHgwiDBMZGP6/AfEQ5D8REAnUJfxnyv+3/1r/v/q3Eigi8W8PA1mAA0J1MzQy3GWYwdDP0Mcwk6GDoZGRn6ELAE09H/8AAAB4AXVUR3fbxhPfhRqr/6Cr3h8pi4wpN9K9V4QEYCrq7b2F0gC1R+XkS3rjKWXlfJeBfaF88jH1M6TfoqNzdWaXxZ0NM7/ftJ2ZpXfzzeVILi0uzM/NzkxPTU68Md64GQZ+vfa6d+P6tatXLl+6eOH8uVMnTxyvVg4fGisfhNfcV0f3luz/7Srmc9nMyPDQ4IDFWUUgjwMcKItSmEAASaNaEcFo069WAghjFIlAegyOQaNhIEhQxALHEqIeg2P0yHLjKUuvY+n1LbktrrKrOgUI/MUH0ebLc5Lk73yIBO4YeUrL5GGUIimuSx6mKl2tCDD8oKmCmGrkaT5Xh/p6rlphaS5PYp4kPAy3Un74OjeCdTi4nFosU6Qg+qRBsoazczLwHdeNqpVx3AW+oVjdhMThOo6YkGJTl862RFq5r263bbYSHyuswVrylsSBhHzVQKDU11g6hkfAxyOf/DVKJ1/HCvgBHtNRJ+b7eSYepeQ4VLZBqAeMjgM7/zyJJF1kuGw/YFpEq458Xrr65YTUa6VCEKGKVdJ+2FoBYYNKCwV1K6B2s1mJnPB7Ww6GtyO04ya/HHWPHs5P4J65NyVa5VA0E0LocwPci45b6tvMvohm1BYc1h12Xd2GrbbHVkjB1pzs6IKtOHeYd+JYhFasmfs9Zt+SZlo9pu8eg0utWZAKB8vjaxBQx7cSbK3Qdr2nBwM27vrXcUHtLolLJyJjK3CAbDcFDo3hsPZ63IH2RrsoWyskdB47jiKitFtcAgqj4wQQxN3PB81RCiCo0Y1jnUVYlOj5JHhJd2JBevIEeSQxDWzTN8PEE3AL90KtP11dVrC5II1L1w331pHFq10vPBGYeyUCFRvB7PAEzMltdubhb+lZ4dw9w86yyNfG++u0ZWOBkmsb+GrsrKGIN4R0XPQimnAEcj3CI6ZDR35zzHJEZlcW5cQCTMwty4umkB5B4ajHwVNhQDqdMLSAmClnhLScgYgMbQJESALUrtIvjpQz9LVxuIPSiYgQkjusZ01l4BERrPtdO9KfDErKQLne6EUbJlXHqTccNzL163tuES26ickjo5va6FIkCyIyaFEYA+lejuqlFxLWIYKmQG9W0tlMe0yXu80wPe/OavEJrd8srSFziSal30wMj5H2mH7T6H218RQ93qOFysDEgtLBoRuQUeXjyPQKexdLjoa4vtAQJiBsEXYutEo9T1/m5mUdBMbXFCzIq8Z6Yl5+7nyic+1mE3xisVatpBarpcC/mUs9/s3Csty2GRPfLMo7FrfqcS1KDxIntwVjnkEtjRJoFKEVHWmelIyxd7Y9xlqGHTSA0VfbnBks08M4W21bHczuJBrTiYixiBnsMF7PepCwTAdrGcy8UqZb5uWGvIyX9QpW0XJSrqE7hNzjjGU5u1vgRe6k5DVv4DZvpVnP6Vi0yMKLOhUvPUq9tCzvFhi5mV9KVNMvWpfRJg1bggjEml6Uz6KmiiN92dh+Gg19OHK4TmOC61TIcAFzsF7DPNQ0fkPjNzr4sMZHaEX5fk7uLZr9LHK9AW9KF2wU///BUfaOnlREfyrK/rv6Hyn3ISkAAAEAAwAIAAoADQAH//8AD3gBhXwHfFRV1vg5974yvZdMQspkSIYkQkgmhdAyIIQQWsSADCLSpajUiMgiAkuJNGmhKyJGDCyybCiyiGBHRGQtyLIuf2UX19UPy7oWyFz+972ZBxOE72N+L2+Yd+be0+5p99wBAscBBIN4ACjI4D4oUJEIVAbIL8wPYX4oP1TQ3um3+0v5dZz2bj44nsyKLhYPXKkaL1wCAhuuXcQ69dsWyAu7qF5PBMFqQzQRkzQgYvIQCuXleXYHlCXl2x1YZg+F7HxMDNAQLQoVetwuKZCZjRUTQqc/f7RjebisqAeuEQJXmpZUdA/3KgcgsJA2kL1xDNPDZqCyQAWdXiIy5YOHThUq4/KB1XFpgPr5heVtJuSQvJzxOeKB6HfEplzKWCEA4Sc+Vgqkw8bwIF16K7fg0ttNJr3DajEKBqfT5UlNkwXJKyD4hCRRlFySwU+TvTTJkJTh1wkms6l/pBWa08Fmt/WP+Nz2AWYcYEez3WwXvU5qECE/VB5ylJXl5993Hyc3zw6hkHaPoerldxVjh7eMX/F3hYWxu0KF382pcKpXsV+9QlS93Mj/Sz/ujinsVE1dDTszcEk1u4LpPdjXmDdw6UAsqFlUg7rmf2J+d3aGLmC757GBuEe55mHNXGxifZVrLtuNNUBhwbU6wSQ5IAOyoS2MCxcH7VmpXkHIdZlFP4BPtOvFdvlZZsncL0Kl1pZcS99Iam5eK1erfhFvrkviL9HDKc5X6OV/ChUq7aGEvw5U6QuFVCbEhOSSZHegODM7WOzxhOzZ2cVFJaXFIbfHK2cH7WlELuK3EnR5vHZJEkzvHZw35S933n0ucur5ky/MO7SraN2mrVuqGiNPnIt+NnTy6HF4fMkfvf+6EEjfkpWPh7rtXrJgp+NAk9hzQScj6194/+yxlZE72Ow0KvcdloMLbPcBiDD+2jdSW/Ek6MENfk55AfQMtwabaPC0aZWZ2a6Nob1NKgxRc3qemb/aF0jtk3xZPtkpc4Xjr3KVXE7WDfpi+sfVJ1RotwUyJVFVbE4ZV3JUPi0pLsq++XMM4A9Vd+/YcXcVvrtx7bLN61av2oINVTU11dU1NVV4cuPaFRvXrV7xDGPNH6+heQJpbMQaHLiz8R9fXb5w8dLl5vO7XnzhD7uef37Xxa8u//3ipa9pxpUqrt5AYeq1b8QPxVNg5BQWw13h9k4PpEqB3Lx2eW0DlmxfqkdfUhoy9Y6EnNZgW0t7MZ/6smlubka+I0NfFckQoDwPkjih+d4yrpTleTdRqoinJE6Ts7AULcTt8mRxQbYjMeLcXMpYwucgMgaCkrrMn668Z97YBwZHJm/+/hnWZ/KwOzazl5c2DerS+o2Xth9eshXXd7jTu7NHHeb98+VHfqw/+z/Cmp5zhvSZe3e/kSOubt2EO3tExnWrrbsy/51x94+aWFa/84V1k/bfx2Z1fWE0+2It+2zfxGEfAaBiMbBctRiug0CpIBLFUpyK2R+OumYgYrZB+cZAdoT4+TfM0CpsksEggGCxGoNUsV4J5sVpc5SGJE6pwxvIJgM3r97+1Kq1S7et2UQKUI/v7znOCn/8jpW80ohvKaN24aOatFEFAx8XLFYDFYItR0UbkQMljuIiEgx5HMS0efW2pWtXPbVdGZb9yjruPIInv/sR3z/+EisAhMFkrmCRXGCB9uEUKgoomw16o95qEwxoJiaT2cDtl84CUP5G4XWJOTBmWLK8olOmNOjMKhUpWZWHK5LZgl9279229we2OBUX50kuVjv5QDo7PBwnsvrhWJF+YDIuVagZDxeFHOF1MEKbsBMEQS+KJjOVdXJ1BKw61EH+feqSTzTz3I7ZA3Zuv+whshy3sDFL2TjctJR6n2SDsfFJ3A0I5ewXfAgugw7s+0XQG0SAfFVWHOEsr6TyphSHW5NHFc9J6Wa+7B3Dfp42HguHAUINniPlZCpQ/l0CogDIrW/8u85iv7sGv8ZzGzYAxjwV/MCxTwobJQCTWU8HRPQeruaaXpRqestVdUOXso7dupeF7px4Z8+ed3arKFc44AIg51W9ch4kIIiUEocmSk4sBpCcj15oUDRJXYYExl37RmirrkIv55rLASYJJF+S3t0nopeptU+E+mLrLK+lPgQyid3mCBU6UP1rVz8R2n770zc/Xf7x8s/Nn9fvaFi3rmFHPfmMLWRP4lycho/jNPY4W82Os88wiJ34K4tdAIQjAOQkx8YArcM2PaAOjSZBL8uolzAJFFvGDXd8ej67P2AvKpUkOYghcnK7zl300RBcsExwzJ/hbrd7GuYBwhgAIYtbTx/3+d4klJ3gtKCQnGIz9InYZEzqG8EkjSzNavCB/cXYlcQshhyMsZrI6PYLWc3lOG/vlA4rHr/3uTFD3r38/r+3fMKOke9W4oJ9G566u7au84CpOz/ct5R99wF7W6dIYjjnawrHIAh3hlungFOWgXoyzVKbHOr1eD19Il6vISsrrU8kSzbY+0QMGpdjgYh60zDTHJKHoyP4404pw27zB4o1o62gq+BLL299am8j+zv774zj995/dgTOZsOfWr3rnTWPj2h8qGbo1/M//kYYvmxfms7TtPrM54E7ns4vwBw0rFy/aNJjRRVTet31OgCBPABhongUDOCAzuE0h6gnxChToCJ1ulB0iH0jeqvscFBZotflk+hMQ5oJDqhrC/l//FxmAUlGYeK5Z6Jl5MDec2yJQdc+l5ViNduL1avoZ805eGll04jy6COKheT8S+U6kQwdw+lW6nPpXF4qtEoBziwAye3mMnRLkqlPRLqZdQlsKxTcLghkqhzjrLL5M+WgUwldSkjbL1HPLrCf51d8MHbv66zu/mcGl5Kz0YNZ0+mcf759kbEB29qGGrZiYWop2b2R9fYqnKnlWOVzqXqgNfQIB5LtRr8fQLLT7CyT0ZLaL2K0WFzU5e0TcfmojkckcgvcyhJ4pNlr8Bd63VyEhIbiGhfIBFGTq8R9lqcWB2Dl1G79Rn/9i8n08OU3L/760UX2E369YuvqVUPrI9VryFR8CXc5V/rYefbW7svv/YNdxUHv/OnFVQ1V8yse2Dde0UcAIY/zU4L0sA1FEQg3jJT0jVAJFBlqbOOrALk1dCOmkuHNF+mpaKOYunHhldNAlZhEyFGpz4R20C+c47Vmu+6gqXo9lewuq5TfXrLnZORk9Ink5JjAlNwvYvJBoF8E5N8qd9nN3jrmj7mOx8OPLDXqolpgwv0zZkpuzaeTynf+vWjNvnr22b+bsfDJR7+e+cL6dQ1bXlu3CDvOWfHIMytnrhJPHt7x4L7eg/48+8C5U0euLuu/f8ozr1xteHTRssdGru8V3kwfeHTMsN937/zksLEzFdlO5NQpNsMLWdAtnJlizzQYAAQu26AljUvWZbEQlyuJi1Ymcr8Iaal2jjKNg5qJ9Ctqx02jMyDFKHJw8TpUIvjHKhXZQlZ0/Iwe1eO++6/RVHpg2mv/uPbBuguPMtfKLU+tuXfjkIFraEVzg2tlMuZg6O57/vXBP1C3kZ3H9od2PPV81RMVE/aNAy3HEcaokRS34Ta+LAA8XotzQMRiizkRDVfN87X0JXae6NzkVR6Znehb6J8XL+Y3IKovXMjn0oEDMrkmmc2iXu9yGm0DIkab6hgTZklwj/T6FDccpXsmn6Rjlxv+knyrTFMR8+U/cF9+DiRwh/UCiChwdeXD58cDhSwsRjeikNNcTo83/0AtP2DDKLywji1nhxSezMTjgo9eVHOy3LBbJgIQ0OsEsToiIFRHrIjI4wHOlfxEz6a4ZOTXTLq9eTjdTofW1bEH6up+g5GIBDhGEr2BkRNVlMZTa/P3HKVyrMMKrF3H/KPYUAWjlGsXaRnXrxTIhrJwqp/bMtnphFYWIdgGoLWtddqASGuPzdA7YhNaqFZLvVJSEa48LZwUd4YSN4mJ+aq/ctSSXgtmD6gf2emV91/9KNj38bHd9l3PX0tq19dMnzFw3OSsgsWjj+zqPXn0w4On3e9nZ+NJLYFZ1yqkQ2ITFEM5zzwyA+1KLJ1kVwpAjsvSTgx3S+rQQeiisxv5Ky+9kGbnqUmllmSFEhOP6/G4ug6C2nJQUPdSt0td36R1IFMgbsUalrqlQAbw4KK1v1BwIH/udKqm8NCQbeMHP2LUtVk3rv7Fb4712N3Tt/DeaWvZt3+8wA7swe6Y/5cvjv3I1rHJn+AyhLM44ODVn14/7bBUDpq/hpxb8c388XfdM+rU3veu+Tws17Pv7O79aFvzMnvxc3aaHRq8sAZX4jgUsP7CfvYntoNhGYquJiAAAKJNPAIyWLjk0ojFqENR0SwqyILNaiG9I0bRYhFECoKD518xh6iplZYz+5W8H0OIlBsz/tURB6IHmnaT7itJORvb6A94cnbjGZYvHrnSg0zENwfPGTGddQIKJwCEo9xyW8ALGdA7nO0UUg1Wn89iEGQLjwd01iRrUlXEarWAxVcVsTjAWxUBevt4QnM9/gxBMbluwe4SAjxpj/mcgN0ef3cCt2IAhVVLsR/7+TIjjZjU9PTeY1ew4I9/Ovhn8cCeI/Nf9BnK2Pk3/kZ7TF00+6HoquhndauXPAGAMIdb09Oqr8gOu6jFpbdQb5IDekccglHi/HK2DL+4emRymUNIE3+Ro3WokKfbtNP37Cs0/7rxjQ0X2Cvs2Rex/NNLuysbxBB7lX3FPmdvl64rwyU44QusOVSzuj8AUTgmDuEc04FdsYcWQQ8COJyiuSoiUsFSFREct4ppwc9rSBlA+ZuAPZTBx2Az2Uo2CY/hIHysic/1z59PI/dU5CtWz+aJB9gi9gKmYebVKZgHgMq89Bc+r1GJWSSDAQXQoWAyS/reEUlCQsTeEUKRr3B03DZmUZBwxy/6S/MZmh+dTYZHt5OF4oH1LKc+eilhJj0UhpMlAKQ6pAbjTRPxSW45Q0CbAac3asPzwaNfrY9LTuyi2ilOhUvnI8SSohNapUJK7wiAaDLZe0dMgujtHRGdt4+8/HaphRyV9+rq5lT1xe9nfPc0a2IrDuKQL//9bve3DrL/so/Qj0kbVrGXCYuWZWXjUhzzD7xn/+D6GvYau8Q+Ze8H8LUY7WK6yuVQ2KdHBJ0giCCaTTraO6LTiQaJoshJV81RgnG/Qbydi5f/DYnpjc2ssZGSRrI3Ws1z7dXkYQC8NoLNxfFqVpwaNht1OotVT4GzFDJj9GrpGI15+JJiPpxLMg0v6dVv9AONx9jclFWuR6fyFGvI0TNxvRC+UjHmnkjBViRGg4Ix0Yn6RGzLWkgJZRVRDKHw1TvRrzc2NpL1J6JN5M0l0dc5snnk4+jCBF0QIT1soQCCJCMFzgtw3EBXxTekkO0+0aio0pV/bIp9V+KIgpPrUZJOFCUev/JSmsuNBjuVjDK1gKQgp2DnLbuZlRjwuJUAn2MY4nce4COtZjadZSsCntbhh6zRomMm0bbpo+bh4oGrVQLPOume7Uev/BCXo1IDsUG7sFsvcaytVpDB7jBS2aqjKCdypaUI4xPzabNJKZdj+WvNn+tsW4/RVB2xkGeEk582NR/nE3ZMwaxy2guAqFp99FZ5bu+IXqDW3hHqvLVNiOltBiTmueJRtpW9oZgjHIE9sBOOujo9+v1/fvn5h/9Eeb77LHuYa+94HIt1bArbxs6yU1iIuRjEAnYqZp+E8erqdUBRONnA+c75DE6XQaiKGAySLDuqIjKVEtavhpXmSgW/mlplYChutYXx7Ay7tLsRZ5PWUePGL949euKoYPr7t1HOh2jK6mdXrVC5wHaoXLBCCp+Zp8MeAIEa+OqmZtns6x0xC7KTL2yZM+MtlRs3J6I2pViG8q258sX7OOxndrH0tpz5ki3rzuqxivyf/DnN+WMCN1SGs8yIxKS3y0aDQdYTwePVm8EMVRGzmVDK5UepkSi6cntnp2Ku8ktw20SOf5bGNm4BcRXyGdhfcfkJ9jQ7/VXTzl2vfEZGRLeJB94/zf4+LjqZjFi9cuWqJwDVHIFw29ha4V6a0wSQ5BSFrGxTGvV4uH30CFSfoEoJiY4mt0CGlozy8D+o5jgx+6jmBbwy4BEI+9d3rHnZ0I/GN+7usnL1ey+xM389WLx/1+INHRbWXfoDLjz+6Z07su+YN73vyIFFvd959sV3qtf2nfFA35F3FQw8AoDgABCGcv7JvJ7iABSRUp1epgK3CYLmFeJ5qGYSi7k3IEsbWYFQyQrE9PWqJzjM14yPj2OHrLDdhgYZZafDrqOCmQ8UpzGUuFzsLkUnVHMYs4uij/2F/cJfFxrfee3ld8QDzf2vsC8wo5nuaa44+Mabh+ghQAAA4XW1/pMcNqJgMuooCJQqiPLlrxWvQhjgF8//SgXTwej3O6M/NmF1x8zWHdVaFh/5uU3bnwXkmg1yXz6aT6km+QwpyW6LRdQn2Q0U9TGTotqUGOKqNclWAjJldKcyenwSZ0h8cyc75y5CT3v2xU42u+nL9p6UYpSa0Nne7yy+1EQ/7PaW6/dbm0N88llHNx18ic5qnrv59RXv0YUK93QAQr1q9QNhhyCJ3ORLiskXFJMvtDT5KhocAz63Yu7rj/PIY0oTXmKdjuAkfHg/60QWROeQZnI4+gq5M9oX4lybrUY5GWGrIBJRpnoDiChTUeOcJmE+qKL+GCJdcNEhlrSb+Q6T8+R887zoCZJPFyv1ZQBBscZ6pWKmQyqDLKBgMIoCNwcUdUrMcuuKmVot8AvlzU6qi9roq82/0LSFwoaNC69OAIQGdoRMVnSRY2mRUFAYoxcJlTDIOdBSfeJRD5nMSvEEu4B+dkS6svyKX6HWC0A+i1c2Kd5c2XRy3h0mgYbo/4spg/KNEDuCzdrMFFACSacHOUgFevPMXj5rMb9CfMoLfOrSA+KF5b9KyigFJCgExOMgQVJYD1TWiQQEwrO+G5rpVFUTC3DfaPxsA1vG9pEg3dQ8jnwV9QJea2Zv0k3XKtUKsJLHIlEqwBgjmU/LQUfRp9mbCwCxTjhHHZIf9OA8AILRID2BkJ+s1ZoxwDW1OMStBHU83G1fm5MZ0+4QzhUdK3f33F8MRKk50lPCUEXzoVc4K1NnTEvz+Rw6yqMpYkzrFSFGI7jd1ooIt4LJFRHRA24o/98LVH4tX7NllapJZ7zS6LZn8QVeLKsVKjrQrxv43GPPvUychyc/VveH0F3HR77xCrNs/mPDWy89tOWB3js3Y1+b1GPe7Jq5dxTuORZ11TZuHC3LD00fOhwI7OVWtVZygRPSeVUt0+D1Wq2mVGqiGX4zmNwOu8HOhccRljzgqoiArYV5DSXF1SDB1sddEk825YBijeRQiVcrvHAqyJ5Pv/3+k0l/7GwKzGzQ6Wa811i/qXFjfb0wlJ1jP/DXxwMGLpdcbNHcsTuWvv7ll29fOPPJXwAQpnMOLxWGxbIaK6VuPU3ySmaOmQ0cHDPPzVmNGM9qlJ1DHgNzu6hmOGTcZXYV9f8d8HTbUOn8QrbvuW11Tz3swiw0oRPvyPQu96Sywe9+2mlNGRBlVqGU88fB+dM97E+VvGCx2CV7ht/htgIgmqhez9mjt1FnRYR6bscerSYTkLTqvTcUDPLPA6osi+JOiG7ST//n2W+/++TCTLMsNCxmTzdu3Ny4evOmNS9gNlr5647tA/rh0V+/mfny+4Gv3r54+i+fxLF0cN44IRk6hdOTDF4jpdzqtkrxGit4uRskyaUyyqIw6paZQyiRZQ632++JsUuivNbh53Kb+x/2JYp/e/+7qFl8eecf/zBk65bfb7WQLstc2AZl1GMH9v3fJxx/p2pttp/+c/eGrS8oUksFoBYpHVxK3cVlMjkJ4UaSuj0GvhQMgKIsVkScspUqq0GtY98IAxWmOZS1p2QNgeJSXkPW3DX3mE+zrxreeANH3lObN6LH8KHopW83l9G3+3TugmsDC9PnPNkLgEKQuYQCzplcKIVu8HC4a56vQ5YpvYtY4ESnSHIzW6Vn+Qzd72xlLbYWV0R0nXpFDJm6XKvOqvPk5pJekVxrm/JekTY2T7teEU9KnHUa+zj/8pXd+rzbxD1uragaVBdAqDC+jaAUkrJv/OXKcGMXmJOnbhQXF/F3QsHJVnf87VhB3sSqoa/te5X9jf3r7FdPzMgtC/ccNOnTtwb3ZPb6ZWdOPLzh7amPD50/4z8/1T4uVE5ICkzt9ewxXYdBbfPqVx54ddvqMauTndXFnYfmBnY+2PS66ypEhs2ZFOn5IO08/ZFvfn4cEPYCCD24nnuUzM5i0nFz7dF7vEkWvcMhVEQcNgOA3q0Y7xjlCatesVT2mALbtRUfM1P06cfm/+GZhgadoWD/jBMnyJuLfn/kk+jrfHXnDOow4N5XP4gWAxDYDoDjxAtAwcr9tZ3PJCDa7Ga5MmImVlQ04/3EwqZSIqAJJVQc3NDQ1CG3TceObXI7CJWYU1Zc0qFDaSkAubaKudSxTZAEd4Q9TqPRrNP5kj22yognrLcC1z6ISzW5xSTOhATTljhb3v2det7Zv/eNGZnLt9g16B6h+aqNHZHv0yaP8TSV89QGJTzetxgMRqNOEkSdYHeYAGw2nY7KRje1xiKGfD5zeUyFyuJsRTUiQi0bdclYkzcER73JeuD5E2zOnB07dKSgy2icydpGlxLpQTZOcjW/XTo9NjcO5nNT4GQCoiASQHfca2tMVBjHYVRo6SRfJQGoCAfcdruDiz+gdwRo66xWHrfb4RPMPm5p0302p1UPDkUPuCLEt534Igi1bHVIVIgEzfAqepHh1bRDypryyOa1DVNmblnVsDhFl79rIuIAXcHhmYdfJicWLNj3cnSLcv/zx9HjQmV99dDDg8e8+heuMZq2cnxdUBBOApeiri69x23S22xcWW02g/V2ytpSV72Jmrp7m4JG6NDUt95RNPXwJ+q8d0XUSWM2dhSfU9EknsU6wSyDnOwzeLgds1GbYvxvmcVylSHFilGFxE4PYRT74fKaf/wOTZcvobX5lZ3PPffii88/10Cy2I/swyeR/AFNmMfeZ1f/8rfzH545p1j5vdyW1apU+6E8nOEzCrKsS3foHJkBwQhWq7siYrXprboUaHXDzMdZ0GLBqpaeO2hPAhMUr62Y+gRHrThpU8Niry7c+PBf/+f7yzvryabGFc8+6xowcMRg1kUqqh9azT5h/1GcNr14+GTWl29fevfUeYVXHNNSlVexqMKW6qHJyT6bL8OfnOK1pqalecxOp8wtv80MFRHz/+Y2VT5yJ1l63Ul6r3vQ0njtQyL9GzaIW15cvXnjnI8uf/fJ57P0SQsajObpM/d9mHXp3YunT59birloRDO2a6z/9T38eEzFCzE9okGOpw1ywy6zXm8wEF4DsZrB4FYtg03rc2nRkaE5IY15ZEfvjt4eRQtfaahz6rrsFoaZNlk/fTbaJFSenDQjlrnS6XyW1twOtIplrqLzeuZaEfHYJKq/rj/5t8pdueG5kbsG25Hfpq50+j/e/+tjA/bXzF82+dmN88r/evSPL3Z6ftEjj7Yds+J13jSzsaHnpjbt7h4Uvrdr2aAH+yzaXLm4R1W3O7p2KO71FCCkX/uG7BQrwKPWJlwu3jPioEKS1+C0OXtFLGGbVeaCkj1xU3kqIVjV5ONWqo52xVGXhtxKNuHyEMcdA5NSJuSy17ZurRiBXdlrw2vN8lyzHQeQZdU9/83mRWePngiAsIOvrjKhElx8fh86ZZPJ4DS4PSaz2aZzWdVV7TFqEbMS/4daVmW0rJcrhBY127EvX9TPNNQl6UP7Z7zztlAZLeMO6GMSvnpozV2Dj54hp7RcjgiVau+HAQ0ms6hHK6jhiJZl+NX0NFTicIYQt7ER+76ptuiMte/tYyP4oI/8o0cx9iPtrx6K5UpSgI/Winsblz4lNc3rsZipYBZ0yQ7ubnTuxCyYK7c2A1U2Z2Rlk8LhUHSq1BmbsoRPKeSfcBbp2qSdPsY+3jNxsk5nLHCcaHqjg0snBF7dzc6QBZ3OvHR/dK5QyUaz6j5l+4tJbXTp7trW9eRvHClACAIIOpXGzLBdFiVAUWlxQZ3RLaD1pnQ4ngmjmhUfYgteQT9m/JktwFVH2Cn27hFSQLxsGO6IfhU9jUdYD0AgfL1LfHw3z/sVMqnHK5jB7OBLO0UHfIJCVam1GRJo46KKOdrSUrLvuwFOnfnuS/tYTsWfl/StKu2xq3cXzuCVn9wf+pn87mrGy5vtC03HtkAsZ6YPCZW3yJl7RUQr6npF0P2/5cz0oeZ/ksHR0+TL6D5y31Q6eN685sPxrixetlPl5/YlJxu9AFbZRbmnpqlpTq09K3F7TdV/bpXcPJZTfEtxCddDvj7d3EK4ZLfHjedrpx794PFH58/49MClCxdM44aRZaRxE+aPjywnw0Zg4ebdS6Xj7NzZoCl4FhAvMxuZrfluorSo0RSABN+tlHzx8nKeJv3cDAiV7Ijaw5Oq4OwWDQ4H8UFqqsXiE2laujso0QScEzYFFXSDxYr7U7DPVNCV5Dj2pcRw4eKhDx+Z/9jjp45OnvHwVFIePIvB49LSPRvZ+yPvJcsjvOq5cRenZNg4zJn2qEvdpyXVQg6tAS/XAzu1JvkcpuoIdVglCaojEuTngS3pjfw38rSkOlOZT8nQVNOmbD9lKoU5HFg8t2TMUz2mRrqPyi95omTcisrHK/sMJSfuLFn/UKvsVinhsvqH/RkZSeoOPFuKdcJwrcuYCALV8343AGpSu4xtNPOWXcZcCQNO1/Xt0PNKk/Gszp3Ly0IVZPfVC2Lfxb3C5ZVhQDjK7fd5dVemazjNozNTahCARxo62irVJxKnwUz4SzDKgg+07k9ljt9sw2apra1KOJCldLR6NAOuqD89OWHNwpPHcdniPisKChY+tHv7My8sX/FdifTO+xlov4LNXXfvoH7vstCH5z462QkQypUYSDzBpV4Zzk5y6s3mZI+dGD1OMS3dlORL6h/R+3xOcNr6RpxJIPa5uRWkRdPQzZ6Nm29lf5Lfinl2ypuduEqQxqONXTatnD0HG9jQblU05erVU2+99f/EEzUL+/1uGTs397MxS+7YtDz/xwtzsfO+U4psZqMkeIVtnHNByAibW0GmBSxtctLd7iwZeNSYn1gJchaVBku9il8r9co82Ja9clCxDnKwNLs0IXQ6VLV4+OLx8+eOq7t/UVXVgmF14+YuGrN42MKqeVtnzHh627QZW8mHj01aNmxh794Lhz059ZEFD/CHvfj7JZN+N2XbM1Onbd8BiscDEJT9Fw8MDrdzWGSj0WYS9URPTS6LW/YmGSwW2So5HBScbqsz3UmsTqvThG7JlATlWg+33RHrzL7lpjuGUOGj1uaovjBEKnH2HjYCJfY6dmGv72BvYGd+ARu7j1wgZ5vZ3Ma57Ec08RslQBKsgaxUVYkkUR726QUqUDlmFjgmiYqtbgjFLYRiI5p/YebmnxVpXPuF1kupUABdeGdcdiE4pdy0Dj5fmkmCgNS13E07lbRqK/n1/mCviN+tt/WK6OGGznh/s4t9I39VVFmLztSUlwuwZdCiRC2l/Kk33lG0dHD/qprTbw5/ZmTxqMV9Z8yYvelw/cCqjf/+6K9P9H9t4KLl7R+cvmJR99W/f6Ggbs3LPQbRnMF1WW0mD5q1NDW4IJjSKdy5prTH+klDl+fctXrZxm5rs9r27dWuY8e8oqHTRvWb0MVZPfnuKWXOMUCwWLTQ8eKH6u5TWpiTanKAI8lnpW495N90QCAhzctKeI/FxVnZpaXZWcU4pzgrq7Q0K6tYnFrUrl1RYUFBYfwOQGEM7xzvEdt5hxKeSwWDXmrNT0936a1esbSDZAKH1ZRuIuCwOYjJYXKk5AWcoRQByhNPBdhblgFRMxHuG90bnN2obu8KDjc3eYHM1py5DiFU2NqhNXTQOXMWz10weE77sRWvffDZq0880vHB5vXv4PB3les1tv2D02z76xP2YNvdezD3pT3s7N497JOXhMCeTTu3t/2dq9X3n575qfMjIXZI/Q7b/u6brOGD0zj0rT+wD/+wB3P2xr8GQKCCushU8W1OdzqUhlt5pRQDokeJazP8rQwGh88D1EYJNTvSOakf3feGku9qVGpqG4xTV8ojfbXWGSt18iYUtdZJXEnDlt0/edPztWvHjM+btnB+HauecmLUlAeov2bk6HHjJkhCcGFoRIcJs1jnI2OaCgRBqd8NhFraSI+CBGbICTupxI21YNTrBbMkWKwmUYegHGS5WbPRiyhjVuw2EAfPVEriM1kjLsUhtexzTK9lO0kQ1/dk29mzvXB9yo23qh9EHfeDXhAhJWwiKKAki0J1RCSQr20nattixUJOXfM71Bv9Hhc+CdeuaV3LRAIbAAjXdUoX16r7wqGgF3iOLui5Zpn1JodXKu1gsnFoi9Pi0DmtjnQHAR63E4fT4bythikCCP22ZKVVoUS+hp0Bqm51Fnr+L2UjHz5YPXLwfRNx36B+l3eeXrwWxYbNVy/8n+pGrtwd7tNtSfXsNFaLo9jTdPZ89ub/pXB47YrkEiRpzW3r+oJ09UfBJLnmAoG5dBi5LJ5U83Z/2GIGp7L7nGwzHPNQhS3J7yWaAKe27LkytvA6c/fPn39g4Oqa+fun195VPX3qwLunC2vmH9i/oGZlTdOCgdOm3l0zdZoiv/GASic8yQYLAMhwBiA6Q93NqCLLub9OUmpcstOLaHGCwAsItnQvZqjyadHEUVx6cz+0JMt+sjy645vIQH91edGont0XbPj9msiaPXiIVI2/NHhk35IePbMLh0yeP6V6/ZPPA4KflKlzBqAsnGkVRaCONIPUOstxn/MhJ+nrRKMzxUmcTl2yP92s88eVhKvIfTe2KDHRmKtlyd/2PpPpA3vsPbRzw4w1sz/8snbmA6Or7+w+pUPP8mXDl2wVvqx+wJu//YmVHWb32L5q0oAeXXrkBYa2LZl5056LnkfvwhP6xD0X5YAIN3pyAOvaT85494494cnCD133dnN3O1oEqNZDegiV4IHicLJoMOhs4HS6dC6+LeC2ulLMRKks6LWkMWHX6XqfaELKyMnTOhsGs13PNCxJNkz+Z/0Qg6GhAeewK698pKaNLwyr2caOScrsU1mzMEJygRWCYYcgIoBopDa7TidSq4jaQa/8RJkG7MortqVTEvILI6Z9PL1rzacn//ov0pY1S3t/raYhx5WrKDBA2ED6Yh0dqvitsEECMJuofkCEQsyAJOqq2jzatUOseZR82L1nz+7xMwlZzIVNAOBQIge7xQhgUfrILXa7jtog/71CzQq3qDNoZYbSkOzBpo31obZtOw24a8BDQx4ubWIXRk7UT9S1Kckrtu+bHgSEvqQKP1d3kPleHwFKDSZuX2mGBGlK3sc5EGO7FpnEzw8MXLlQ8pQsvpNv4K4ld9471NP2/hFAoDt1kaPi26q3zgo7lONnEnBvHfMfbr3iP964r4XTTjgzJSYsWHJ0V/3qF3eu3/B8lN07fsKwYRMeGCZM3nHw8LPP7T+w/TH+b/YjjwCBau4hdsY9BF+ZRr1AgMrEoJdu5R/4fBhELEUxdqM72c5aTGef1+IQVnvjPTGxCb3wfhzek01IufGW24c+AOIZzq8gnCYLACAbHrsGKMNHNDV6EPR/osTBA8ziYuCw7Tjs+ThseQz2CwV2Ou3PYeV9xMZBVchkAMkvnuAQM34FFf4CxEZ9KD5qXmxUIBBiM2mNMBxSoY3Sba1zpQWwlbVVwCXk5EIqmmhqKj93lzEgkm2zG3tH7IEWecP9w+9rGZ4ohslCYnXDUm9MGF2J0ihbnJBfkf59Rs7q4vv9Y9X1ozq9+dbRTwPhSMnYbk2zOnXtXqqkXKHH1tZM7NOvw5ip2e0XjzjcWDEhMjB/yIz70jFvcU/eGRvmVKrdoPJ0bltbq9R1v/YaDgTdn4hNzIa84ltA1MLCGETS7SCOQSAGkdoSIv86xGsg3HKMrOsQE6CUQxiaKGmtgtyAkWIwIMNxKIN5QK4xAIk3MIIVnNA/fAdPM+wIOhPaRNEtuvROycm7kHm7iMHM7wabASUqOtByowkglmHm5an5G8bOiYau9y/SAF7vYVQ2zqR5UUeUXdxLDtMT0SMkNXqR9Lhag0cfURpetbZG/AvZr2jRHOZSOkc5ztkqzrMIAf55rM9N5VmbON8PqhxBs8aRmyFqoTwG4b4dxLFrV2MQyS0hsq5DTACHylWC/hhXgUA+gFip9id54Z5wod3t1glmAKcgCUk+rogS11erXC6/JJ+WL8jcIsuyoNfbqiJ6Kri17tNEXW55EDWhHZV7uVhLarxnM5QhVqpNqbM3bcJ9eBf+bn/07S9xNlt4lIyKtaWSunqyntWxHSQcba5nhhhNYrmqS+3jurSmJdWx7jiVLwUx3sKsmLb5bgdRi4YYhP92EMegKQaR3RIiX4PgeGy65RhZ1yEmwMdxnW4b5z7CQrQJJmEDGMEX1st6ino0mXXgy0+0x2rMHLeOu0ewbTh8BHua7RiLw9m2MThS2DCa/3fbaLyfPTsaR+CIsWwrAOXzv877434CJ6RAQFkZnnRvmsAPExtcAA6rqFMCF0+a32f2945YHTpRoDazQHnjnES1lrm3+Fq4+YgL/ygm0lglwc7fxSoM1BZEj3qKzovZ1zsLv1479tEH9ykddGe2jnx04rGmh6Mjpu/9zy/NwbFk68SdWpPhmOUDNr2FDyl9dMMXV699l61D26bmvgOVZjp2ZRN9qTc7xVdOrI9LlUxpXLoVMfk7Nb7fDFELp2MQKbeDOAZzYhAZLSGyrkNMgA3xlRNMtEfCbHWUTvF5CmKjOFSQeO/frHjvH9+pMOtFUbKDBB6vWeALiC8fs96sl2LdkZoVarkRrHVH8v9lCDcaJGexM+zzQ42NZ9GHnuYrO3mL5LvvUdvFy4zXWq/B6ei/V+5Y9yQAqv0oW6R0aK94ppxcMTUAXpMJUu25YkGhw5Hbrl12RaQd5LrV3S5tj+vm0xpaZCBL2vZIQjWCo6Q2/2lnOTKUqE/1UYJv5ZAOKb36Lxv32p+OTCrfUnn27ofnjujZq094yVz2TcPf/v7+58IPi6dX3OnPyC0L3b917LZdPTcF8w/0mVQxcHZN+cTisqHF1YMuXO0r7Nv3562c52pXkOTnPL8TACXovgLUVWlXOH6L57V56vN2t3t+7FP1eajFc/Gz689fe+UW3xc/vP58whegruiOKsCNGRZehzj+cwyiTQwCqAIhKbtXOVDENWdkOJQLre3tedlIaF+WlJTe3ghi5y4pbYNtKyK+AqGgV6RD66BdECyZQU+xzqKriLgsNtBaO9R97viBxZsNL1corarUot3Jy/+qHSkOv7bLFExMz5TiAMaaVIb/wg7NmPnUc0VVb4+a/3xO8a6Hj/0reqcOO967tWbwurHswpy73lz03Mt7Jg1ZtfPpwzvoK7OWGon8BOY/+yddrEUqp/ie+4eMYP/9+yRWGwjyVpav5k5sXH9/5MVNo2XdQ6Sw4ektO5V1zXc4lW4kzreeMU+JFaqnVDtxVIn1ikl8vyqRVppEbn5e21993vp2z4/9rD7PafGcS1R7PsEQk1d7TaLX/gqAo9URXolZHHYXKGOgqI3xIgApTICovZYRgzDHIa79iUMMSoA4xl6IQTg0iG84RDrHQ4OYwA4CqBbHZ9d89VRlx1zyq6euqsJ5fsnUqhXwYN5jsTttkj7YRp9eETFSj91nsfLIR0+9LqSttY3QmLJw6/3b430QyITiIlAqxdlBMcj/lHpUk+6gRVqnV4kwil39+e/sK5T/9sUYXdkp9n3vr4YN77ll3OW+pzc8v7NpC3vppe0vPUtC7Ev2FzR/cQmlWcInr25+cGHXgtrefZ6cNHMlm8b+taaRbXjh4Aku21jXgbraqmOrzaLyJC1RNqNUrt0Vk/1HquySb/e8drD6PPN2z4+p45Ngi+d8fu35a9/f4vtcJtrzCSkx3Wh3fS2Ph2YhR9gJVO1CD4WTPAaDTSACKjsZTifKZjMqJ/QQ8tX1yhOfG8nPjUN6iccXE96Pp8ejezqVFHXsFCrqot3J8iefZP/q3KW8Y1m4nPwYfwOUY3tEGCUsjvv7PvxEa3orl8vQ6iZn76u47uxt1M+b2Kjnf3P2ZWVxBdGcfXw7QXSpTl4Si1SnX6L2X2yaUjNt+Dw0Xd40o6Z25NzmV4rxTJ9pvAljfYjl95r63Iuxboyetf0XbEBQGjL6zuy7cMOvu8aRRcWffLRjTHRO6DzXjNjutSq5e2KSf0PVDI8mmZuf107VNOfWz4851OeBFs+5ZLXnE/yxtZarrfrYDqw6wr2xGWIjpKsAWu+I2t+VyXex0jOkFJfNZpfsrQMOsKeYPHqqT+NdjB7q5euvRZPnb3oYUWsXUUomXo/W9JUVbx7J4HugOKR748Sz333/yd8fMwk63mSElTs38OYRzF9LmyID2Efsvwpjn83sV86KdcDaFQ1NOXQi58u3ce/ZMxo1nF6Nmgn7Y/TmxejV+puEyuv9TaJArLfsb+Iw6gkU6UvxFLggHe4Ot0uSrE5nKpjtqZKY4bc6eDxpBaOR51hGGj+Vwg8UUAc4b5zk4det2ia1fWVJO2TlvZF9aafq7NnSl1EYN4y9zJ7BYRgeN5RaonxdR8+Rfs09fmXXEH+ecs89LqzDiTgeF3ljSZmwlZ1m55QTGn6hNi32qy1yujAU0iAXCmBQuG26zkI8nqx8t7tVlk4oDOW1Mbbh0RHvSCKixdiunWg32pIyxcyKCIieFj7YoVjVRAeseV9R9a0q5rdyvYktTFkxnyvWs/Nzup6pu8B+ROnrBae6djz2+InL0aAOq4Y/e8+QDVf9G154buPm5xvWCb3mrjKRjN+7vp4xEwtQh3q8Y+a0KbPYz19MYDO5tw1mkLIPz3985rOPP/10x9NP7wBEE68Q7pH8YFF6wGWwWXmN0KJs3CSfKkwsE/Igzx1QzhIE0DR3nLfB89CcmUMWLuFF2u+WPJGTu3C+t3TBoiIAgpP5iG2lhdp+kEMyxSpMejflw753u9KSrHUfcfpp29njxj46a8zY3z3YPRTq3rmsqJu4b9TM2lGjps8c3qFLlw78AkQdn+k78TN1N5wPn+Szg2gC/nKrZc73En4mKLYb3o4vKU6BwvQ0olRTQpJEXXkDB/TOLAxZRpmn39tucP/KjIL21tHmqcL5rLZZnbvMquO3Tl1n1aldEci5Ff/FEyCCePMvngykw+K/eMIh5f8VUtYgffQ49lB7+R0HUNTpQenhP6WBBkscHEs5y+QZ1WF29yx63DMUTVyicNM3RdTpRZly061Rq55Od5RisXIk/bGKDPGARzmLjqmfcouq/e4LkcAKAEQZizSpY1khOWwS0KwXbHbQUZP2M1+x3pUgbyrhA/vjeGG9tcNjs9M6maNnb2B4FnXTeR1Tw7TF6DZldL0ZRcHuMIs2WRn9LW10DWe/ei9JQJ4ELUkjOsxJ7m6+QYbnXvbTY2Ow6D6FHh/7lTTBZZSVLOtqB8g4iCCHzeZK+dC1Y38ymWJ3vb5SBnteXszG7cAfyXB6EYzgPBD/URrIP3Wr6u+OqQ9OmDF94qRp5JtZj/9u9sx5C/icym8TiHvgB8gGOwAEwU4c/M4nELJA1RaoJelK5ZPTbBAIlYikk0WuCInpvPM3e2CJ+16ASv2UpGqjUBAIkMRRWhRNSeqtK6QAyGYBkJXxUyYgEkE7ZYLxAQJIVjbPWkkXx4+ZIJRzr1gnnuT0TQ2Xp3rTPZ5kI5Hl5NZ2wZDslYJtjN4kb/+ILklMTUvtHyFp1rT0tPw0qqdJaUlpzsxM6BvJlJ0W3iDhg5ZN3bwwdMsfKruRW2ZQbuRlt9evdcorVpPyolGwuJT/dUDsCHUKOz4AWfRHQvA065Z1snHLxtW7/oddaNewgZANO4LY+n9OPN+rQSxmD80rC7ed1/Rm9/puaEacl3tH9TwUsfXIpYPVzprl6o4iBXdYT0AUtDAtYc3y+EuJtrjkUwGEVlI650ylKvE+5ABA/HNTwuf9lc+BgItUcf0/AgZwQedwuks0ypTyaYjSqY+iqLe60l3E5aIWOZ1mxPuV70toergeGwR4g0v8V2eKi0otVJZJ05xV7GHcsHQO+0ESk9LSjDup6913x/KzVKdeX9THFGzb1v5TDDfpQ45bECoJ9+43cBcf0nCXXr/F8/43notvxJ6rVEnqc1TWG05X9cp+AAQRKWiHl2Knck80KgqljCAC4Aq1QvJpPHP6XaxCImp1FiUv6pwAUXstt2Ud9NrbHGJCAsQx9ufEKktsFtJBzroOMYF9EK/V+GK1mv8PflNJUQAAAAABAAAAARmahXJJOF8PPPUACQgAAAAAAMk1MYsAAAAAyehMTPua/dUJoghiAAAACQACAAAAAAAAeAFjYGRg4Oj9u4KBgXPN71n/qjkXAUVQwU0Ap6sHhAB4AW2SA6wYQRRF786+2d3atm3b9ldQ27atsG6D2mFt2zaC2ra2d/YbSU7u6C3OG7mIowAgGQFlKIBldiXM1CVQQRZiurMEffRtDLVOYqbqhBBSS/ohgnt9rG+ooxYiTOXDMvUBGbnWixwgPUgnUoLMJCOj5n1IP3Oe1ImajzZpD0YOtxzG6rSALoOzOiUm6ps4K8NJPs6vc/4cZ1UBv4u85FoRnHWr4azjkRqYKFej8hP3eqCfDER61uyT44DbBzlkBTwZD8h8/sMabOD3ZmFWkAiUs5f4f2SFNZfv6iTPscW+jOHynEzEcLULuaQbivCdW5SDNcrx50uFYLzFHYotZl1umvNM1tgNWX+V/3gdebi3ThTgVEMWKYci4kHZhxBie3TYx3rHbGr+Pdo7x4dIHTKe5DFn+O/j+W2VnE3ooW6isf0LIUENvZs1gf/LHojJwdpplCP5gn/5gi26FoYa19ZVFOJ6Sxuoz/q2Ti20IKVJdnqvYJwnhfPH/2f6YHoQF30aZaK9J8T026RxH5fA/WPW/8IW4zkpnIfoFLifGB86v0ffm5nbyRs5iaHR3hNBD0HSfTzoPugRM+hdN0x052KoHLBS0tdgpidAiEesDsgWYO73RWQz2LWIwjqnMe/uYISQtlbyf2NlT9Q9PoBcBnrO6I5ELoMeyHkNnIXGdv809H/DXNOTeAEc0jWMJFcQxvFnto/5LjEvHrdbmh2Kji9aPL4839TcKPNAa6mlZUyOmZk6lzbPJ3bo56//Cz+Vaqqrat5rY8x7xnzxl3nvo+27jFnz8c/mI9Nmh2XBdMsilrBitsnD9rI8aiN5DI/jSftC9mIf9pMfIB4kHiI+hWfQY5aPAYYYYYwpcyfpMMX0aZzBWZzDeVygchGXcBlX8ApexWt4HW/gLbzNbnfwLt7DJ/p0TX4+Uucji1hCnY/U+cijVB7D46jzkb3Yh/3kB4gHiYeIT+EZ9JjlY4AhRhhjytxJOkwxfRpncBbncB4XqFzEJVzGFbyCV/EaXscbeAtvs9sdvIv3cjmftWavuWs2mg6byt3ooIsFOyx77Kos2kiWsIK/UVPDOjawiQmO4CgdxnAcJzClz2PVbNKsy2ZzvoncjQ66qE2kNpHaRJawgr9RU8M6NrCJCY6gNpFjOI4TmNIn36TNfGSH5RrssKtyN+59b410iF0sUFO0l2UJtY/8jU9rWMcGNjHBEUypf0z8mm7vZLvZaC/LzdhmV2XBvpBF25IlLJOvEFfRI+NjgCFGGGNK5Rs6Z7Ij/45yNzro4m9Ywzo2sIkJjuBj2ZnvLDdjGxntLLWzLGGZfIW4ih4ZHwMMMcIYUyq1s8xkl97bH0y3JkZyM36j/+58rvTQxwBDjDDGNzyVyX35Ccjd6KCLv2EN69jAJiY4go/lfr05F+Ua7CCzGx10sYA9tiWLxCWs2BfyN+Ia1rGBTUxwBEfpMIbjOIEpfdjHvGaTd9LJb0duRp2S1O1I3Y4sYZl8hbiKHhkfAwwxwhhTKt/QOZPfmY3//Ss3Y5tNpTpL9ZQeGR8DDDHCGN/wbCbdfHO5GbW51OZSm8sSlslXiKvokfExwBAjjDGlUpvLTBY0K5KbiDcT672SbXZY6k7lbnTQxQI1h+1FeZTKY3gcT2KvTWUf9pMZIB4kHiI+xcQzxGfpfA7P4wW8yG4eT/kYYIgRxvgb9TWsYwObmOAITlI/xf7TOIOzOIfzuEDlIi7hMq7gFbyK1/A63sBbeJtvdwfv4j28zyaP8QmVL/imL/ENJ5PJHt3RqtyMbbYlPfQxwBAjjPEN9ZksqkMqN6PuV7bZy7LDtuRudNDFwzx1FI/hcTzJp73Yh/3kB4gHiYeIT+EZ9JjlY4AhRhjjb1TWsI4NbGKCIzjJlCmcxhmcxTmcxwVcxCVcxhW8glfxGl7HG3gLbzPxDt7Fe/gY/+egvq0YCAEoCNa1n+KVyTUl3Q0uIhoe+3DnRfV7nXGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOM8XZouTZemS1OAKcAUYAowBZgCTAHm3x31O7p3vNf5c1iXeBkEAQDFcbsJX0IqFBwK7tyEgkPC3R0K7hrXzsIhePPK/7c77jPM1yxSPua0WmuDzNcuNmuLtmq7sbyfsUu7De/xu9fvvvDNfN3ioN9j5pq0ximd1hmd1TmlX7iky7qiq7qmG3pgXYd6pMd6oqd6pud6oZd6pdd6p/f6oI/6pC/KSxvf9F0/1LFl1naRcwwzrAu7AHNarbW6oEu6rCu6qmu6ob9Y7xu+kbfHH1ZopCk25RVrhXKn4LCO6KiOGfvpd+R3is15xXmVWKGRptgaysQKpUwc1hEdVcpEysTI7xTbKHMcKzTSFDtCmVihkab4z0FdI0QQBAEUbRz6XLh3Lc7VcI/WN54IuxXFS97oH58+MBoclE1usbHHW77wlW985wcHHHLEMSecsUuPXMNRqfzib3pcllj5xd+0lSVW5nNIL3nF6389h+Y5NG3Thja0oQ1taEMb2tCGNrQn+QwjrcwxM93gJre4Y89mvsdb3vGeD3zkE5/5wle+8Z0fHHDIEceccMaOX67wNz3747gObCQAQhCKdjlRzBVD5be7rwAmfOMQsUvPLj279OzSYBks49Ibl97In/HCuNDGO+NOW6qlWqqlWqqlWqqlWqqYUkwpphTzifnEfII92IM92IM92IM92IM92IM92I/D4/A4PA6Pw+PwODwOj8M/f7kaaDXQyt7K3mqglcCVwNVAq4FWA60GWglZCVkJWQlZCVkJWQlZDbQyqhpoNdAPh3NAwCAAwwDM+7b2sg8kCjIO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO47AO67AO67AO67AO67AO67AO67AO67AO67AO67AO67AO63AO53AO53AO53AO53AO53AO53AO53AO53AO53AO53AO5xCHOMQhDnGIQxziEIc4xCEOcYhDHOIQhzjEIQ5xiEMd6lCHOtShDnWoQx3qUIc61KEOdahDHepQhzrUoQ6/h+P6RpIjiKEoyOPvCARUoK9LctP5ZqXTop7q/6H/0H+4P9yfPz82bdm2Y9ee/T355bS3/divDW9reFtDb4beDL0ZejP0ZujN0JuhN0Nvht4MvRl6M/Rm6M3w1of3PVnJSlaykpWsZCUrWclKVrKSlaxkJStZySpWsYpVrGIVq1jFKlaxilWsYhWrWMUqVrGa1axmNatZzWpWs5rVrGY1q1nNalazmtWsYQ1rWMMa1rCGNaxhDWtYwxrWsIY1rGENa1nLWtaylrWsZS1rWcta1rKWtaxlLWtZyzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rEeTf1o6kdTP/84rpMqCKAYhmH8Cfy2JjuLCPiYPDH1Y+rH1I+pH1M/pn5M/Zh6FEZhFEZhFEZhFEZhFEZhFFZhFVZhFVZhFVZhFVZhFVbhFE7hFE7hFE7hFE7hFE7hFCKgCChPHQFlc7I52ZxsTgQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQti5bl63L1mXrsnXZuggoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCyt5GQBFQBPTlwD7OEIaBKAxSOrmJVZa2TsJcwJ6r0/+9sBOGnTDshOF+DndyXG7k7vfh9+n35fft978Thp2wKuqqqKtarmq58cYbb7zzzjvvfPDBBx988sknn3zxxRdfPHnyVPip8FPhp8JPhZ8KP78czLdxBDAMAMFc/bdAk4AERoMS5CpQOW82uWyPHexkJzvZyU52spOd7GQnu9jFLnaxi13sYhe72MVudrOb3exmN7vZzW52s8EGG2ywwQYbbLDBBnvZy172spe97GUve9nLJptssskmm2yyySabbLHFFltsscUWW2yxxX6+7P+rH/qtf6+2Z3u2Z3u2Z3u2Z3u2Z3s+O66jKoYBGASA/iUFeLO2tqfgvhIgVkOshvj/8f/jF8VqiL8dqyG+d4klllhiiSWWWGKJJY444ogjjjjiiCOO+Pua0gPv7paRAHgBLcEDFOsGAADAurFtJw/bt23btm3btm3btm3btq27UCik/1sq1CH0I9wl/DTSONInsjxyKcpGc0VrRNtGx0dXRF/FpFiV2KbYl3j++Jz4vkTaxKjEgcSXpJzMm6yb3ALkAnoCV0ARLAcOBjdCAJQJqgWNhJZDT2EbbgTPhz8h+ZFJyDbkFSqgVdGh6Br0BhbFFCwHVhNrj43DXuH58V74WcIkahHvyDRkLXIGeY18SxWl+lMHaIVuSc+h3zHpmNbMJOYuy7DF2E7sFvYMJ3Clf+3DHecNvjm/m38g1BYmioxYS5wqbhZ3S0Wl2tJkab50U04pl5CHy9vlmwqlZFJaK4uVnco55YlaUK2kNla7qEPV6epi9aMW01jN0zJohbRZ2mptj3ZWu6e91wE9vT5LX63v0c/q9/UPRiZjprHS2GmcNG4ar8yIOcycZC4yN5mHzMvmE/OrhVq6NcCaYC2wNlgHrAvWQ/t/e6w9115r77XP2fecrE4xp65zwM3lNnZnuBfdZ17E071sXj6vrTfP2+Hd8F74lJ/eL+Hv86/6D/23Qfogf1A+qB10CAYGk4LFwdaf2C+JfQAAAAABAAAA3QCKABYAVgAFAAIAEAAvAFwAAAEOAPgAAwABeAFljgNuBEAUhr/ajBr3AHVY27btds0L7MH3Wysz897PZIAO7mihqbWLJoahiJvpl+Wxc4HRIm6tyrQxwkMRtzNIooj7uSDDMRE+Cdk859Ud50z+TZKAPMaqyjsm+HDGzI37GlqiNTu/tj7E00x5rrBBXDWMWdUJdMrtUveHhCfCHJOeNB4m9CK+d91PWZgY37oBfov/iTvjKgfsss4mR5w7x5kxPZUFNtEoQ3gBbMEDjJYBAADQ9/3nu2zbtm3b5p9t17JdQ7Zt21zmvGXXvJrZe0LA37Cw/3lDEBISIVKUaDFixYmXIJHEkkgqmeRSSCmV1NJIK530Msgok8yyyCqb7HLIKZfc8sgrn/wKKKiwIooqprgSSiqltDLKKqe8CiqqpLIqqqqmuhpqqqW2Ouqqp74GGmqksSaaaqa5FlpqpbU22mqnvQ466qSzLrrqprs9NpthprNWeWeWReZba6ctQYR5QaTplvvhp4VWm+Oyt75bZ5fffvljk71uum6fHnpaopfbervhlvfCHnngof36+Gappx57oq+PPpurv34GGGSgwTYYYpihhhthlJFGG+ODscYbZ4JJJjphoykmm2qaT7445ZkDDnrujRcOOeyY46444qirZtvtnPPOBFG+BtFBTBAbxAXxQYJC7rvjrnv/xpJXmpPDXpqXaWDg6MKZX5ZaVJycX5TK4lpalA8SdnMyMITSRjxp+aVFxaUFqUWZ+UVQQWMobcKUlgYAHQ14sAAAeAFNSzVaxFAQfhP9tprgntWkeR2PGvd1GRwqaiyhxd1bTpGXbm/BPdAbrFaMzy+T75H4YoxiYFN0UaWoDWhP2IGtZtNuNJMW0fS8E3XHLHJEiga66lFTq0cNtR5dXhLRpSbXJTpJB5U00XSrgOqEGqjqwvxA9GsekiJBw2KIekUPdQCSJZAQ86hE8QMVxDoqhgKMQDDaZ6csYH9Msxic9YIOVXgLK2XO01WzXkrLSGFTwp10yq05WdyQxp1ktLG5FgK8rF8/P7PpkbQcLa/J2Mh6Wu42D2sk7GXT657H+Y7nH/NW+Nzz+f9ov/07DXE7QQYAAA==) format("woff")}@font-face{font-family:"Open Sans";font-style:normal;font-weight:700;src:local("Open Sans Bold"),local("OpenSans-Bold"),url(data:font/woff;base64,d09GRgABAAAAAFIkABIAAAAAjFQAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABHREVGAAABlAAAABYAAAAWABAA3UdQT1MAAAGsAAAADAAAAAwAFQAKR1NVQgAAAbgAAABZAAAAdN3O3ptPUy8yAAACFAAAAGAAAABgonWhGGNtYXAAAAJ0AAAAmAAAAMyvDbOdY3Z0IAAAAwwAAABdAAAAqhMtGpRmcGdtAAADbAAABKQAAAfgu3OkdWdhc3AAAAgQAAAADAAAAAwACAAbZ2x5ZgAACBwAADiOAABYHAyUF61oZWFkAABArAAAADYAAAA29+HHDmhoZWEAAEDkAAAAHwAAACQOKQeIaG10eAAAQQQAAAICAAADbOuUTaVrZXJuAABDCAAAChcAAB6Qo+uk42xvY2EAAE0gAAABugAAAbyyH8b/bWF4cAAATtwAAAAgAAAAIAJoAh9uYW1lAABO/AAAALcAAAFcGJAzWHBvc3QAAE+0AAABhgAAAiiYDmoRcHJlcAAAUTwAAADnAAAA+MgJ/GsAAQAAAAwAAAAAAAAAAgABAAAA3AABAAAAAQAAAAoACgAKAAB4AR3HNcJBAQDA8d+rLzDatEXOrqDd4S2ayUX1beTyDwEyyrqCbXrY+xPD8ylAsF0tUn/4nlj89Z9A7+tETl5RXdNNZGDm+vXYXWjgLDRzEhoLBAYv0/0NHAAAAAADBQ8CvAAFAAgFmgUzAAABHwWaBTMAAAPRAGYB/AgCAgsIBgMFBAICBOAAAu9AACBbAAAAKAAAAAAxQVNDACAAIP/9Bh/+FACECI0CWCAAAZ8AAAAABF4FtgAAACAAA3gBY2BgYGRgBmIGBh4GFoYDQFqHQYGBBcjzYPBkqGM4zXCe4T+jIWMw0zGmW0x3FEQUpBTkFJQU1BSsFFwUShTWKAn9/w/UpQBU7cWwgOEMwwWg6iCoamEFCQUZsGpLhOr/jxn6/z/6f5CB9//e/z3/c/7++vv877MHGx6sfbDmwcoHyx5MedD9IOGByr39QHeRAABARzfieAFjE2EQZ2Bg3QYkS1m3sZ5lQAEscUDxagaG/29APAT5TwRIgnSJ/pny//W//v8P/u0Bigj9C2MgC3BAqKcM3xgZGLUZLjNsYmQCsoGY4S3DfYZNDAyMIQAKyCHTAAAAeAGNVEd320YQ3oUaqwO66gUpi6wpN9K9V4QEYCquKnxvoTRA7VE5+ZLemEvKyvkvA+tC+eRj6m9Iv0VH5+rMLEiml1XhzPdNn3n0rj6/EKn2/NzszO1bN29cv/bcdOtqGPjNxrPelcuXLl44f+7smdOnjh09crhe279vqrpXPuM+PbmzYj+2rVws5HMT42OjIxZnNQE8DmCkKiphIgOZtOo1EUx2/HotkGEMIhGAH6NTstUykExAxAKmEqSGMFl6aLn6J0svs/SGltwWF9lFSiEFfO1L0eMLMwrlT30ZCdgy8g2S0cMoZVRcFz1MVVStCCB8raOD2Md4abHQlM2VQr3G0kIRxSJKsF/eSfn+y9wI1v7gfGqxXBmDUKdBsgy3Z1TgO64b1WvTsE36hmJNExLGmzBhQoo1Kp2ti7T2QN/t2WwxPlRalsvJCwpGEvTVI4HWH0HlEByQPhx468dJ7HwFatIP4BBFvTY7zHPtt5Qcxqq2FPohw3bk1s9/RJI+Ml61HzISwWoCn1UuPSfEWWsdShHqWCe9R91FKWyp01JJ3wlw3Oy2Ao74/XUHwrsR2HGHn4/6rYez12DHzPMKrGooOgki+HtFumcdtzK0uf1PNMOxwDhN2HVpDOs9jy2iAt0ZlemCLTr3mHfkUARWTMyDAbOrTUx3wAzdY+niaOaUhtHq9LIMcOLrCXQXQSSv0GKkDdt+cVypt1fEuSORsRUwgrZrAsamYJy8fu+Ad0Mu2iYFhexjy9FIVLaLcxLDUJxABnH/97XOJAYQOOjWoewQ5hV4Pgpe0t9YkB49gh5JjAtb880y4Yi8AztlY7hdKitYm1PGpe8GO5vA4qW+FxwJfMosAk2X9n9X2cVVfnA36pzHNHJGbbITj75NTwpn4wQ7ySKfAu9u4kVOBVotr8LTsbMMIl4VynHBizBEJNVKBAfMNA9867j0InNX8+ranLw2s6DOmqIHBIbDfQR/CiOVk4XBY4VcNSeU5YxEaGgjIEIUZOMi/oeJag4mEB3PUOweCaG4wwbWWAYcEMGKn9mR/segY3R6zdYg2jipGKfZctzINQ/vxkJa9BOjR44W0OpTKAskcnjLTcKyuU/SVIWSKzKSHQHebYW9mfGYjfSHYfbT3+v877XhsIwGzEUaleEwITyE2u/0q0Yfqq0/0dMDWuicvDanKbjsB2RY+TQwOnfvbMUhiNPFyDCRwhZhdjE69Ty6FjoOoeX0spZz6qKxxu+ed523KNd2do1fm2/Ua6nFGqnkH8+kHv94bkFt2oyJj+fVPYtbzbgRpXuRU5uCMc+gFqEIGkWQQpFmUckZe2fTY6xr2FEDGH2px5nBcgOMs6WelWF2lmiKEiFjITOaMd7AehSxXIZ1DWZeymhkXmHMy3l5r2SVLSflBN1D5D5nLM/ZRomXuZOi16yBe7yb5j0ns+iihRdlFbd/S91eUBslhm7mPyZq0MNzmezgspUUgVimQ3kn6ug48mntu3E1+MuBy8u4JnkZCxkvQUGuNKAoG4RfIfxKho8TPoEnyndzdO/i7m8Dpwt4XrnSBvH45462t2hTEX4Bafun+q8jIzK/AAEAAgAIAAr//wAPeAF8egd8lFXW9zn3PmX6PNMnPZNJMRRDMkzmDYgZMRRDCEmMMUPJIgZEepHlRYyIiNhRUdYuS4ksy9reLDYsdOmLLC/Ly7L2CgKrrCJkLt+9T2YyYPl+D8804J5zT/n/zznPBQKbACSTvAEoqJAdtUhUJpQYjBJVAUrKSkIOJ1ZUOEKOUGkfV8ARiPB7E72m87WJZF58ibzhXPVE6QsAAnMufI4H9XXsUBh1UpOJSJLmQNWqNsasLkKhsrKnA/T1HCF9PQzSAPYtD5V5PW4lmFeIK86EcCRbObLp2lGjGxpH4+f0wLkjjU3NDSNGxYSMxbSdDkzomhE1SypQalCISvniob1lDuTL7injC1O+Mr/xmeJtxeRt/iJviJ8mmrjFOr0BJCZ3QAbkQFu0ypCZ45HcRqNJQkiT/LKsOO02s2Ryudze7CxVUnw+v9+tmKTcgEEymzPRlgN2e5rHaeOXyeeiisnJFagMOSsqSkr45kL8Tr450SfM5/y1V66pGvBwTV1BcYcDEX67QjQkbo8cigTplyVI2OHh/6zdXHO4+iR6SjoxMPzo8O21h2tPx7O2lmylNV/tY5Nwubj3fXUA/8BuFveBr74CoNB84V6pSnFCLhRCL7g7OijfR7Oy3FalR49AcXYRFBnsQUcgkAYO6H15j6wiAGu+I+Ao6pleFDAWKJZMX+aImNunWOpiskIVH796ewAqEzvV9gqX9nQ4Qd8S/1V/ScSM/rmsTP9FfNUNIvzuVlRPMFxY5PB6fY6iwsJw3/JIOOTx+lT+WzaR+xYWecrR7fWFFanqi/33nnn9+v+MvXr7mk933/v5Gy3PrN6yZjg7WFV1D5s2oGoh7nx+k2vvTrkeDT0HKlieXvvakkfecj/5uKnhm6iNHRk27a6bevTL+clH3ulVkX3cBTJUXjip/CDvBiO4wQ95PB6qo/len0+WTRpofo8nLa04mB3UgpeX5PbMLEzzKz4/tapOlXt5a1llpXhN7FF7r8zJ37o/iN15Q2XhvsE8RdajOqwFyrwFGETXr/0F9u9dNnZsWW9869X1azow9qe/kpc7D52mPRf//HcJFrR1npvf9sWX336EO7/9x7lqeUMn6frt8y+//ZD/JjzecOGEAnxvWdzjpTAzWtHbGjRhlhdMXqvLVZSWnl5kpSoChLJVtcwXSPea8vNLSrT0dEnTegyPaZIUqIlJLnSKhAV/pfBuhb9EbE53bYVIM/3S45hfiZ+7th8IFPHN5QuXcscms1vF8kiAZ2qBsEEEFQX7FnJDeNy+8nIF2JLZ7/77DPtk3rJhVV9vefPD+57CzCF98cr82+s631s4/vbxrKPf1XjT0Iqrh/+uafTMxR+9e++mxqZnxzzx5l8embstxo7PeX0Ju3DjoqYJA7C611hyd3hAtH/zpD5jAAVm4DM6Zjj5C5WIAIu9DuxCIB0kuvEBAKGBbSTz+L+3Qm7UZjaZqCSBqtrN+VQgmAMTua3joeaMhBTicTt9wULS8PSj5x58eNk9Z5c9RUrRiPte3MTKzvyHRd5Yh9vFygP4yq3JlfmyfHG+so1LyP/5yqgRNVjuDPclRSGvk7Q+/ejZJY89/OA5sTT7ifVb+zru/OEM7tv0EisFhErSJGUpbrBBOOo3ms0ypVZUVc0umUyqilarYrDxpN1aJrKQuykJwvwz/yPMUOCTXSqlRa6CiEzJy8U4J8DWf/jpM/eeOMZeLMKpxYqbPTyx088Oz8MKtnMuFqefm4gzAKEZPpUqpG1g5qivGRSjkSKAxWo2giJRKOFCysqS4vjNhQXCAa4Bxz1HEI+yNlx0FBextqOk9SjezW49yhaIHbGzuBtOggKe1wgFWVapDCXbdSNt5ghfoNCgMxLA3X1v++dV+eg/vIsdR9MJYWVcS5rISqDg+CuVQQLkSiTc7QoHPANIGq49dw6wi7GwgmvujZoUrrSRNsaMLqjsmfjnkYu4aU6SlJZ28xECNyqt0mMrM2pBricBidueiNS5iDcRA0ir4h+y4yQgGJP/DwLVF05IQ+W9XLoPLou6LYoTFPCnGT0jYkaV2kfEaBok8y+1kkYCeeDQnIEyQI2nUrlDE3kkDT3PzsfZhXMoxZHGw2OmTRl7w+SpLeQoW8gexttwNi7C6ewO9hD7/usTaELr8eOAMA+A1nJtTNAj6jJKAAZEs8WgqihJRgX9wJHOkYoXkf8iwR2RiKKqRRiitWw3lYdnr30cDzNae/8Tw/1L3sS5gFALINXpKDQgmp1pQxW86M3O8aoqMTlNtTGnSjATM2tjXEgCYfS3hKyuCkFHkzBeScI6WKhFVxLuD+EQLt4TkOo6CU5f1drrhvrrVly/dspDayfe+8EtQx7fuJG0HcbZLyyc1r+5qXbojtE1xa0dt4x/5c31r9hA6MYtP5DrVgijoiV5Po6KKs3MBOCVStFlgez8bG57v8/vq4tZ/Gilfr8pX7VqJm1EzJQGeg3j5/xX8ruWMbrG4oduFyXxMEFyQlkpkMeJTvhKbCMY1j/o2ykPlEmSr335KxvYPvbZydev29P65KNrX58+c92zfxv6+Kil76PnU1Sl6fe+l694//zIweMjUO1ZPnH2TU3fxqa09+l/6OHXAQgEAaSZuhddMDiaZ1epkRAzpTKAxyVzrnGh7JLreGi7qF1VqO5WvoGQ0DwF584uo3cpz4sCBzc9T9SAQPKgoqI082X2QfxhshCzXmZ5Jmoo6MvOYAk7gCWH6cudN5+98oSroZZNBoRWbuEw1ygDmqI9OZ36aJrbbTPYqIFmZrldRpdFA27ONADF4/HXxjyKYhkRU9LgYsIJ6e+pgHAkGUjkgUhLSBg2N9w3IMwpylMaKScT/n6efcC+PLN8xActmMGOhu+4bH6EpsV/yAgOoO0n9/+HnR2B5h7hr455LAPJ1+wc+1i1AYGhXOs6eQf4IR+uigYUp8WSlweZTnAWFNpz6mJ2u4d60kbEPGnUwENEvUTbVJbqTCjIAQJlPo8IXEUNdQEJcCAhMvd/gvy8Q3E6TmsbErv++Z2tRuuN/7f1X+zsNyv/vYhoN066sbVlcRuZiq/iWvuP7rEb/7LuhyPfsFPLMffdxfMnz7+1fu5qEc0RPdM6QIHLo14FgCDKRFYNMiWU1MaoAsLfupYpQwobhpDby4OfkoJ4iZQWPyy9jNLm8wLSdEtUyzvBB3lwOVwbLXYqnl6U+o3+Qo/Hnp1ttBtL+ihOZyBQXGwBS0Z9zJIGwfoYXGwTYYlLnVeWdKFwoCSqAj0/LqoW8qk7kShFiku3kK9cfCPVHyDedt/qpeyLL06zk4uXtU1DyfXfE2fPmrng0Ccjbhg+flxtq7zz3ZUzXhrU/O6sjqN73mrbXD2iY/Kzm89vbBp7Y/3VcwaOI3vqq674XdnlYysH1Ym8GajvcgekQQFURnOzZJfFEgyCCwqLtNy6mKZRrzd9RMyrUkMdR+Nfdbfu7DIBzCIaw0J5kS16edcXuNOdBXwbyU1J1ewxtvTOqxtHP/3+JIOl3xOz3v0nmr9Y+f2d8VNjp4xrbbm7jQ5mdazJdtYzasufW2r+83/H0fEE+3DTXbdNum1+Hfd4stOSZuvMURh1OXnyAPjtnsaYXeumMPAnaOwXTOb4NVYT72PqU+xG7xcf6mPNQAQX6/IUcHKmcllV1UUlBRXFZdIaYyZNUjgzJ6Rpm8u6mKrApzM0vUgYbrTrbF2SFHbS18Xa5GhSmF5P7JYqZODSiqKajIK/VYNEqQIEZRigFxShVFwJURhGD6JU0ZlDP443kvW7ccNSPH2abWFfCns140peoYDeNeZHHSqlRgkMcp00ViJSV30QKhkjagSue7JMQH4304/FkrTgKC9Tjh69VLueUScBrhFPNVAUJJTKEur6Ce0u1dCFuorNZH28UayJb2IaDjjNtKWsWmioXPicrpB365FYFc3LTU9PA+B2dlqdhUV2QCMFCAazGmNBl900ImaXkg7mVCR4KJVkyfpRJFR5F86oRckaXOFoe0m/7W6YevPVY5uWvzf1w3P7vm99YGyIHU4139VjH6ob1tLvqqpxR9u2r5m2onVI9RVXsHUX9eMTLkxQdnCc6AuVEIv2VCsq3G5XOGzt77rMZaWBtEDvNOgN0au8hkhEMg3QTPzqkVUq5feAklS7rOucMleiPU7ivc6kQtuiYCqrfNTdlVF8fxLxCKgtj3iUQC44+jrzOa06UfyDSESH3x2j106vnpWmTXnhlT1o+UfT/qt9NdGau79/Zhf73+exCP2T2Pz/ZefZXez6I/gIyv/EkRs7Yf3IFpM1FG27n5x++NQ9Q/otPPTGQSQBH/Pd/9Yf/vjjne1sx152gh0p6f3eKHwYW3/EZZ93sA627uCCpcfMzwj7AIC8WN4IKljh6miAWKkBQZHNZgqip6CSZLOSmpjVSs0yBZocIpTouZRiZWGortKL8gsDiITjI5Uik+LHJ7FXiYTziRJnywoMgWdwNFstbzxXRcbikdvy72CqiPvXAaQznI/t4Idczsm9VLdbktKzzeY83vfZ7QGDlqalDY9ZNLRSTbODPb0mZneCvyYG9BLcSxY9KQVDSTe5ArmSp7voCQYwWfE4HPqnwOu4AyOYNn/C/fPZh2fjx7C84/aZ8xev2nXHraxT3vDKpkVrHaacdQ++/xGdXTuy8Zr4NrZo3PgNgDCXI/UBnh9eKI36VZeLN+NWnxscUBNzSKpskmtiJleyNBOvSfVEKuQRD2+0Iw4l2BUdoTI+ZiikBS+9h9OfOtrxL7aJvdiOkQOHDrc2tEs72U/HmW846xyGi3DSZ3j9azd1FvUDImwoz+E2NIBd1OtGAIdVkjTZUhOTqWTlLbMzaamUcEELnGVzAbVA0BHKleew8ew2Ng534wR8gL3Dxq5ZjO/xGuQP7A55A7ubrcHDnUMBdY8RLs0Mg6L5BgnAqphMiBbFWBOzKNxLAnII3zehaKqJofOXXkp5iCsitPAkbol0bqDV8RN4ijmIm4tl7zK2BLqkUsalGqFvNN1AqVkBQDQJoSl5QlZS0MVSLhaCX7P9dHD8OHKMEwKWxLu8KBdxL6ZDTbQo3e8nNquVEFemy2DIsGlmjQdbOr9BNkt+r+zlsmTu1FB3wd0z5VlnstgW8BBwKLpv9YJL5RlPdMKNOALkU1L14E93sr+yVfg43vTxgZtW/GXnd1vevKGVHafhuOnyAlyMU3AcPjDybB377rOT591Y2mUHeYJu/Ug004jIzW+QJFm2GGhNrMaABoNsUijK3QmbMnfKFN2XPIHtjr/NdmE5uRrDZG78Xj5t2EIGAOCFiawBT+ozgRw+bSAGXiPLwM0MRsr79e4NCw4Rxa5IJL6kRnJurq0bOKEZy79hDV4k7gVL5JHn1l4AdgYS+tfxVS0wMJpjIcRkNiOAzUBl2cq/UrNZoXwP3VtwpgBXF1eWAOXEQAdVfSMRDKBcx1awhYvEZm7FB7CZETKxJf4D39CN6/Hf8XkJ6VIlly6LPUkqBVCQArccJKJUl6GXoPq6r3PD1MsbzldfSPxvRcyR3dAvmukGo9nI1bbxUPHKisdJjEQxq9QGilBcN36X0mUp6hA6Y9DpEYujXuXykscVRBpkK4wudhzbcaSC07GdfUgtRrZEms9Wzok3cw1WSi3nqklH6R3oPr8kYcedOm6WR9NMYETFagVwUFlRVM1MVW5RVLtHv11adI/EnAKwL1KEcM/JO9nv43fpSiwh81U7+qQGdrQtXseFv4FZvycdQPQ8+VKfDHgE0jgAfBZF8RpdNTGjRO01Mer6daQROSBexQQy16Hxpkj+kj3BXubXE3gz1vNr/PlDb76Bs9nSNzaSY+xxdivejVP5tZCj0mP/OYvf4smfoAvtpHU62rkEFkhGowdsNrvdbQXBV3ZNM9TENGr/TSzoRn/ZLXHoEyAo4ckJSx+au+BBspEdYacX8yA6iCb0UGXmlKkTd504Fz8rb/gchAXYat0CdkjjEZynUFmSCDVIJg9AhmYypVOVEwBXRFK5UWSV22N7Ev4uHU92T9OQe+LX7PPaKziWzWZnfL9pJMZW1bO5OPS3LSUP1S3lg9poocvnk0ySppm8njQw8cTzu4wWMA6PAZgtFm40C/WaRcikzJbSWfPzuXKqQ0sxKLdfgl3BF0A82brsgaXLW7gB12EPzH7oTqxuZWvZKtp73M0Tm+Pz4vvlDUeOLdxZwVwPk1KRVS2cQX0ce4s4n+RlpKcHICC7LeCGy4rdAbAELNlGX3ZNzCdRYyq+uhvwVHHWrRpn+IvGGoVFl/MhDadWMcJP9LZen9cr+din7JuOx/ZeN2FqnzFL7767DtWvZu2f2TrnyermlsJrn977BC7f/lkz5g4srx3e8+orqypveeqmzf8qL/13n8KGgcUDKqrHbRP6FwNIYiqrimdLCgBFNBhVKlHOuxSdv3y2lARgcoLtYrOlOn53IGEMEF7k+dXC13JCQdThQHSbDQaX08hRhsdSYuuXVBAOtyLx4BHI6+6CYLnlEXbyLfYFex/D9zz7BAf0ztqVZ+7EwHn6YufCPz33/DraBqjXfyHBI2K+RonRKAOiVZYkC3BDJ+q9VNpUJOaj+sXtVx6h57CC2dmLTMMKdPlKFXO0a4DY+dTwvZeN/qJLhrqRy8gSsx+T0e52yQh+v2ynlszMrKwci9mcnemSzdRvt6NJiOSi+EtCbgo1UyM3WkiKOMKJUtMlGvCIi78nPihD2fPbzWFJ6WPdxqngfix9q9Sr9HQdwoJDth5mUy/nm1hKoRixV/mpUJxwVT85trLi1EAa6twb+aS+9uuhNBsStmnSbVMVzTXLnPpUo6oYTYpJ0C2VLGYDkWXJqFCUkhDL9evG+ooUZ3VpjZj8Izex59h6fnXg56wfNmF/DGMtC5Pi+GHyHdka/47Y4j27dJCYyF2B7wZVlZEQEERvNFFF4QqiSgVDdslOjEH5Z65AarLLowIDZAGWchEZbA/LwDo6mozsXBTfQUqoXleVJiZ0RugfzTJISFUVEExmlYuSRP1I0IAGUcZdOgxNpl1qFqqPbALSzPPvkbfjTVJ6vIrs30m/RXi/0ykkLWUbyWw9T7KjVgXRIIFRJlTBfN2EuvH0BNZX4iUpmc0y8bOPPmIblXMHz60Xa1gA6MDkVFt/ZIKYnGpfnBa6sUmAHY9/mJhqI4S4fJ+QL55xoKIY+VYNoOZTiaaCvQtCfCFHMMy1CH34IX7GMmfKjQd/UoR8AzFIA+R3QIHeUTdBWVYkSTznFd6SVJko0DW+xLKLeyTRZYcwiGjADQ/jqVO8uP6KGOiGzmqyKN4maq1OtpHWXhja9SRIRonoRhEaJZ5K0NrOFyl//vMAAGKNdIQ+qATAwK1gBjVKRVTIdwCUpB/rioP0XWLww7EvHPD6PGRL5ZkqbKpcLx3ptW2gZ/z7GYIdmjju9pfm6E8Zq6OFTovBQvLy/P78LIMhaEkbFrNYZLfbPjjm5jWdnDM4JnvBk0Az/y+ZVYSeXlcUJWdMvMcN9+1u8h0omny9N6YT+huGr1r0xzd+Or/5xbv/On7T8Y9PswO/X3znY5MWPHHDsNfXvfono1K6rn7f+K3vx32E27h55MJbxwOBFVznDsUNTsjh7BvIojRg1Mw2n89szrWA2WPUFFDSh8QUL7iGxEC7mCz83SHi7H5mUeZ0aISzRVANCgTlw1AfH9d2D8WobftHX+7YNsMT+hpLLZbJM2ZOJJNvaZk+Q5rNdrPv2XH2t6XzFTdbPuiJ9jP3rwh0PPOXNWvWAMLoCyfoMWk2eDi6esRYymclxCubh8RkDexcM++lZZJuOTk32SdwmnJoYkjgUBQyIf4DZqJx81Mjh9525cmTzcuHVf/BTQZgFvauOZFVwBH49ZIydr4kH4iQK81M2CcaDRi9Gi+obTZhqFy7xwIOIyi6fTTdPt5ft4+oT4Q+ecShOXlPGioU/BLkji3iOnVPiAnZ9vHnOw9ON/mw7Jv+1omT5kyVp7dNmDnLjWVoRx7zq9vG4YSfTjyy5vt7ViWNk9BynD61y+DMEKROSUpzOLKcJlOm3+OkzuoYFVUUVMesmuoZHFNTel5aloiry3bI3RbgrbNeR4XKwOMJ6AVAxMMtOP2GaQZcT2aVs+/Y3zDt7LdoiJfID985vmNc3Qb61PyZM+d3NmAPdGAahth3Jx+789Eel5+4rCjB7nSOkgMeuCKa7SZElSn1+qwAPhndyHVz283akJgZqJ4bgp8v7QVDiRwWFgxH9KfOeieocBWpiZ1l+9eu3bj/ufm1o2uv6ocGOq9zCZ23rKHh3ZdLPsoafsVgoKAwtzSV26sYyiEKd0SrzFlZAwZIfRwOUqzmSkGUpIHpPXr4fJFg8Kp0K1jRqlj7qv2GxYy5Eke5wr7FpDpWXFxYWDksVqi5e1fH3BkXz+n4pxIOWz79gRHv0LneqJs2FQ76ewKfPao+pSsqEvmsj+ykQFfCF6ZeRcGFyUQK8v26El/4WGzqS33OfxjpXbL2ndc3sTfYvm9+vP3WksHVg5tvOnmsZKGTFc2buvrNabOfa5w5/drrmura10otT/ceNqZjJ5Xzew187smt/1i1bPw9We5Roeh1xYVrZ732vkM6L1UOHVlb2WcEHT5q0qRRuwBhBYC0lmeDB8LRdATw2Y0Wg8Fo9Nolp1MaEnNqJkCjR6D/JfU5336yUOPaKqJJEuCQeFQirWX7O+6YxfZjqapqE/61bQ958LsXt8S/40CwpeDekav/vh0ILAPAD7lsA1jEZFcyGsFksprtJg9Rr4kR6DJ/ZWoO7uobKtNnnyJUlrW3X3ttO14phMgLHn98yIjzPqkFgFxoY259XSt4oSTqd/L0JgaDT/NcE9PAaBctOk/sjOTEKYEwCRGJxwB6tajQpMDBcxoHXzN8CJbum6GLZe60066mRmnd+eJXN6mThXRIWPMH/Un+NdGgxLmTUKrIsmYzWa0Gg8lkN4P41WCzUcXkofbu2oTf3cjSZdpuokXRuGOyi1dx22KswGZWhYd5AffOIrF9jYxdh40sI74Et93MVivueDXr0gYPcG0ouF4DRIkAevQioLvExgPivyvuhO7qQJ5BQRgeLXS7XPrsKDMzI6PAajSaTPkuq9WRKzu46XwOzWzPRJNH7+G7krl7+OC8ePqbjJDCRIiEfKFykdziVfBd8q+ke9n++uvnTGL7vy529F437Xwso/dL097ZwvbVXz9jOnlw3rz12+LfSS1Lh1+/urZpy+F4kfhtxYuQjGCut1tMFxHAq6vrscoOoatQFU0Xx29SyV/XLRG8TS0ierkyof+ZtWWXEPbn7boC9dce3JHE5yf0pzhpostXLJYMcLnSvcYhMa9mp0Nidu8vu/xUrvPeVQMOCCQs6MzrxGVT5986ecr8W6dQmX3ELvzxh7swGyl/I6Xt6/70Qnv7mhfYKbbnQTS8jE7s8wA7B4LrOep1cC1ckMMn1Hl+RVFNlKpZmqrlcuQEq9U9hBOEwa5mQEaKzBKmSBWoSQVlTvPepDFCnPndRKFJtuemosq2GZrG9p/taZv8wfaPbt58TGf7vePdSx/wsv5K9SPtbB87/T/s7H10mU722JDgM67pTN1euaIq8dIsyh+TpOUZ+fg6PcNnz/ZanE5V4I0FhsQsv8m6iSfIBUmS5S2dL8HBXl8ook+LIkFBaLdMkafPPzxZ2v7R5zsmPXeFIQMJ22e1lq48uri9oOMZ9uLa9lNYiho3Z9+6xqU/bcBDAybXN3ZFFJ3LddVEh0mcejw5BCxZZVnUS7wGFxqlMrTMRy+JIqpdWewrCD+6iu3/sre97yvSbCP7xLR8SXyH1LKxZTYkqp/1XIZ4dpmjpLktAEU5bnchWNw5lhxTli9rcMynUdPgGPX+vJ2/2BgiqPTHK2HB5clePsGgXCkPt082oetPnbx1/bDrDtW395oycuG8yJd/3/Xu6MZHa5Zcv2zRrf2wZn1HILfzsvKx+b0rCstHz73+8VXN/8y//JriK/qHR/+30LeE6xuRa8AjToRYDHa7y2UyEIfB4fWZnHbn4JjVYrfL3HVyQt3QpktOVnRhgnBcxKOXvoLpIyFPwCO6cjK3bsas9tdeeHRt8xasYDuu+TD4aeiNN0jGwgknTn4e//yqK4UOT/Gc4zM+cENZ1E8cDrfby3t/j9NoJ7JNtumyPcmJ1sVDgItr7tQYgH+grxdrpR2zt72PpSLjsXRp7XUHt5Mj8dki4Ynt/EpI9JkPcrlm6BV1m0GWiYgIK0G0GNEuC5llKWndDU1X/x0SbTfiOtaElf/INyryZYexkjVJLfFF86aMXUzaumS4AZRtXEaWOMsoSyaOIVng81ETVTMyMjNzVEXJ9plMVLbbMxQ7yDqidR3RdPz2LIDSIO1WQ8wBsin/pGskRZpuUfew19lm7LMwJ1eRcrT7sG6R5NCsqBgvN92NPdk7uARPdt4vtTDH4m9q1lxH/PGvvE03jMkcer4XnuKKI5gApOW6bWqi+YoMaKSUSAQlGWWzQVWtfIZmMSoUAA1mj4T2S2cBqaROkYZeq3KlhdkClOu/mD2BI48cxZHsMWxja46fYO2kPwmyZ7A1fiy+DRewhcJLzK17ycs1KTC73ZrXK0koahm/Jgob/pNT8no0p9XJMTHDAFyVskQJkKKvhBlTUzxHyokifvTqgNsSaw9mmBRz7n4cwoqu+vcfR9RErqqfl+fkfr2/YcZNo8ic866XXnR8Z72xNZI450HXce2MIn+oKqkIYDYgmvQhAm8c7YR/MwyOoefSIULSSMJGySlCWEwR6LrOB4nC0uhAZiCmDrLp6+3xekDI4T38Id7D54ipCHUbcnIcfn+uNTMzIFGXy8qjKd9qSbTzYosp2hbbF7bnuBrm+REWRw08Coc18VTQ4xFQ6+EJhDmL2m6/c/OZG4cpn31T3XpmM9quH32qucGAVz7Z9jEdXMUObcyzBF8xskNVg+knbU8BIO5gJWSlYgMK7tcIpZJMAaCyhONDYlbqCOKOo0cV29lA1ylOauB7yBN7yOHlOmgGQ75bkoI52TabW3Z7qCzl/3/2IIuHzuFynuSi2BZnlftyiBSnzxyCyzwcrImh4e0Xbhz2+9mfKtWtL7xTP39x26LeM2aFPyFVQ7CnuWmyw5K3EXsOrqIfh2dPY5tNjY2nGm7QTxGQIqmCtoEHIlG/Ag4zmKnd7qNeu82mSJSaHQ5QoCRU1lYi9ElBdqqp5pwa1sv/RAMmELwQB0baym968pqFwxaOC99ePv7pgf89chFZcXX5l1NzcyPRii+nphf8lzhBwpbiQanl0rP6Dg26zurbad4v56mukCugE0Wi7Vh7JsTasSV5lIO0dJbKBcljHAhLOdJqfN6cwad7QYchPV3OyCA+n4mYMrPSXCNiBtuIGMiGNH4pGWmKygXqpwH4S8+ePzvOII575nOCTh4R15lS69q26gmSEBt94OCr7YtF6z7vlm8b7mpdcN+rL/fHcyhjZk77c8arjmflv/Bn9kZObzbAuFFEB4A0ST+d2BztZXeaidFqTfd6iV/zO51ado7Fn+avjxnT0sDFqcleG3P6QR7xs+NNXUfUIJTSVqjbjT+pBpRfbpXXFSKawsFwiBuQbNyyZcyzs2sbcS679w9k3/mvbhr+6qufy7sbvojGrt10dOm6WtZ5ttes1keObtl5BAjMBCYFpHXcnkW8R87TLC6j7EsnBrDZ8jIhM/OyYp9LSycWo2xQPZ4ctYBHz/YyHc11H2qb9S+iA4oURXyC3SM+0WGqPrVIoJJaFCmMXFRdbixfuGzBqEk3j1qwfGE43Pbogt+Nn93Y9siC8v1T6+qnzxxRO50cnPC7BcsWhCMLly6MTZs8uu2RtlBo/iNtYyYOnz6ttm7aDBHpCoDEp+PghZnR/7I53U6Plce2UaYyMYkJqxeRED/HBp/idDkbYkCRuuwmm93WEFPtdgt6FMsl5xX9mtiW3kNfypcpEhAfkgPKkCfoEXdAGF7cGCBD0YAVbOGWH374gX38448/vsOW4BViZBv3vHrfq8eO8RdyHMhFiKNCMGoniiKGmUaJSlTVsUcEbCpFdAhyJGBIAFHnAbag8wAAgUm89lnw/0o5D7g2jvTvPzOzu9KCJNSFaAKEBMYHAokSuQpiY04OODjYsWxCcjbkNaluuPdyiXuaS0jHpPfeE0N68fVO/ObSe+8uy39mVlqEzr76oeyi+bG7U3bK83yfkUZBGZwCMyKlaRaXRRTLC6E4JyfkAld4DKmpsbkrK0ttpSafxzc15nHqTVNjepQycUvmivi5NiuyMYtA0qyNo3NOVr9OFfZJmt75WUW7VMhOWtE4fsubj9zRP33SzuaW6LxFB3rWTJj4xSuvXdHyYsOAb/bpj257c+OS5s4tvmrim7appHXPputbn8kPlVdURssit194/xklXdGr7p3261Hh7uKKUGH0uu2nzi8Pxya1V5qmAUYu4UfygiRwVi0/YrQaWIvIdGcQ4pBB7dzU9snCdpLZJF/SOXJNjdRPPa0uMhVd2TKurqk5Mq5FXFPXEB0/7ucNExvqGieOb6wDIIw7lSbR99oBPqhmvm9ikm0mm7/c7yzPc+bV1IrpYEmnX1mlhbZglpActKMVbEo36zBrHWyifBGnSASrw44ZvIhr6bwgFCxiuH4R45HIul+c91p4c3j55tf/fvilPddGFx5b8zJqf5X9DCi9v/m10vvcrj6U09uHsg/0Ke/29invHSBfX7VJ+TAv99nwkcNvfNd82xjlI/4/Su+rLyi3/ObXaPaLTJb0b6xlBfCX+DHKMLqgAOoieZk65HLlmXXU56PLK/RmGI2e9HQbys4GEGweShSEA0F1mAtak3BQbR1SPGxVVo3K6irbp3YM1ToJV3pGr452r7n58XnrWi6tr79h3tY9yqTy/KbYvMvxsYvGRLrPu/BCWegef0l+cNcmpeGP/qIz6oqkNPas06Fd6BEEkMAIbZHRaUaDTKd2RMKCgERqGDdkGNkrBpBGCE4XBIMoIpOMsR4lWko4kLBqJI+K5j8Faab66Q897w8yR4ALIR3yqYfpaPGg8hFyDSo70RG06A12/oayC49HL1E/s9K3DL2QNXzKGb8fhTCZCCJkRZgzSkcQkogAAdYJoQTf6LXQWZQQHjx2hLz1I7pgEIaGErEHWAIzAAhaezTEW+S5kUqBYFHUgcViJEbamxB9uT/ROLFE8QLBIegdsp5+naSN8spKbara53ErgY4FlFnoIwadmhP5X7VaYcvuz5QHAu8h/cO3K+s89eFTJuceP+dft9utd0xUFqDpyj3kqh3K1+H6uhrlzX/ZctHQEckuSNLhJG8MjPTGCNLRbwWDZH+Fr/6Jm7D5hAmyIDMiQ0ZGTrbVkMkqRQ3FUq17vL06HSowmDyctbXd2N5201ln3XjW5a88G6uvnz2nLjJHWMg+7W0766bZL10emd02YWJ7G+NFAYSwiCGdcx+ZGTqdRB35BoSomd9sMRrSZYQkAYOKeoYC8S5MM5WnxriwyfZwnAs9I2/h3kG0RVlFY12UNylYiiCAo/gZTriVRKwOA5LAgiyuTNnkwQ4Hyucer4lJXb96j39EPHUF+JnjK/5+briipGXeqiuf3np9+4YudA6O3jbYEQv6S2bt37Cle8be7rMBwVgcxo+Ir4APJkRy7enY7QbIl/LTzVK65C8mdrvDIed4PSa5IIE5pbQ8dlABTRX6S6xu1DgHrezj3QjuuaN9/n1P7N541ards5oXtJ3REgwFWsOdE/b9v3W9wlu7a432i6at2N7wzOzzq6tvrAr76ePuDExYn+qLI0JEDyCnCdwXdyjui3uFjR/VNMjMIUk6ao6YiGZWHZ0i/DX75U5H1aEgAOK2LmrkhkxmMUmXJFnOsjrBQR/drXNlOGl7yiCq4Y2Z+zTTkbYwT8qwtv73xo0CxS6XhZtDZ7WvpVaAD0ZnlC6fNWF+vigy+yj67YoVdz/PrAF7Z8wo/9mM65SDUhQQLFSOCbslO2RAIOJINwsiAoTMFr0emUykKWYSWc8XiHtk4gMlbe5qgAb7UsMIa0IFwu6bbumd0PqX1/72IW5Tjkmn/3QfCVmPHEWCwiKd8Cj0e7KGEUURmUU6Ebk1RiCQCHSypSLhfEr/+2Eqe2hQsaNeALBCVcRlNjI7Fh1Y7Gaz0W60ySYW9pXNXt9QQI0EXB1/3PjAIiZPQYprQ3RWgnr3Xd88KXuOu/GW5v7s6Kwj6xc5btOZJpzh7hmf2cktXDiKGxPRSYI8MjopD+WfMDoJeePRSb4QbvyciNkVzReismdxFD2z4Oyi0vHr6MwOwnTUfEt8ic9KPBFjIvYqgzhkDw/xTGK3kxc9YlKPgt969IarH3/wwP4nFG9dY+PEiY2NdULbnf0v3Hr7wAu3dHR2dnTMm5cy6s2OlKZTy49OL2AW1Ib01FNiGh70BD7YIdHEB79/Oej1B9UBL+6NL0aoFonqQehRdg4ip/LxIFqsSMPn2KuMXYbaUNsyJZw1fMrGrnIA6Qpa2n5Y+TuAYvg1fgUA6eAP5Nrjj4L8IMFW+uJUVye0D51Au5h8T7W6B7CZSZlyNlXeJ75ClUs8XEnM8as+Eb9qmXpVwDBeWUH+LLTzNU5DpKiQug4YJk0jh0pMoyDbnI1lQp0JPk9rzJdhoRy8xZvKwaN4g9Cm5HHsnddbrUub3bCVWHLF4ldiF1wYPjM27aFzzp37w3lvHP3F7rOrUcnw6jY6d1dT86yJ4eiY0sOnTO6//YLru+j0cyyamXhHhoZU2lu3GPuhiOexHiQ0HfQPYqfoh9HVJ1B0w2//heIgzFQV2SMV52iKgYTCOlIxU1N0cUXaQwR7uWRYkxbXSNDfPYvXhpfEa4MpdD7OPtrg4sg4yUbMNmIRLCjNZEJsvgbgEETRbiYUvqb4syENGQkj/JFkkzkxTAQrMmlscsKiQLvUAAeUNb8G7yQ062PCs0QKkEYsI9rR6nzH9imOvcoLeLew9/ghbKIUT+hoLlq5jiPvcYqZDnXNrC6WKXZGjNP8+VlGYAXOBfY556p5+ZaodTT0KC89ZE+UXqqiG9pSFPdShT1JcXDoO1XhHnmNmZqia+gnXgMYFag1wGbucZ7cAJnQGCmivUCW3ep0GlBamtthAIqVWwGovcRJi9eKLYy8TgmP0+BgddahWmkscQqUlpiPo4MhBwPPA1tV5FzFz7cKwm9+d+CzzzahATIdd1Du/G5GoOPWnR9+ofQoyl1qHsRXeDuriLez36eUA+dUeTlUxtt7N1fgvJMpulHDv1AchOdUhXek4hxNMZBQZI1UzNQUXVzB2vvoeGkj2IAMglnogXTIjaRLBGTZYORGZXcgqMUn8260FqnLBlSM7lL+uB+Vocqr6Rhetkf5tfL7vfj3qKxH+SMavZf++VuaSiUAhD7DLeIHkgA2yIZCCEdyXJ4cuz0tB9LAW+TMK3Ab3QxXJQWpdOWImbyK8arGGFaJqpEG2V2IO/yqihEFV1Wm94Xts3tnv8iA1RevaL1x1sDRP56CjrR2UWL1/ZBiOG0+WqzyvXWXXHDpANrEwNWGNfM3DSi/fHYJ/rbsp+8e6j5uKR4aUmlIXgO18Vocrdaz1uOkKrqR6V8oDkKPqsgfqZipKbq4gr0RJcl9kqDwq4yNv3kb1KtYuCSJSmbrqZpIDiOjjbIoSpJTMDbFZEdTTJAFWdIRyZowKGrdjOZBjePIDroW0tZGwh2UUz1yNcPaH1CQ4fikjst3rbt0NcHv/agMUij5c2Vc18rz5/NZJM3JfMkD1dAaGU3tegXFxQDlWSZTbXkgUGPKKtBBcbEui2SWhkqnxEIQcFgyozFLwnGq7ZUx0g03TH/aTYLqcnOkuuX8iaFL8zhXsVAn4a3SSDRSWl1/RVfoo3fmXTau+ubIbfnTo2vnNjQ0TVjXsWQjbb4+hL9FfuGvkV+cNqai1JldVTJn7srmu+7JLfy6KLhqVGhcaeOylsh5lbWnl49r6TrnKPVMv/LO/azH5ASbVEBr5VQ+UtQfAPb2jbbEazY1vfvCE6Xna+kHfxhi6RUj001a+kAasPTikemClt4lAX+3T+GCYcUDmqJ/lKrwqwogTCEpQjeUQBBOgS2RydU1JDM/P2g3GoNBuabG7/GMKZPlsC/fW50fjVVXsyDp7OxQNJZtNo6aSoF3p+S0NFDHPHgbYiBJgQZGv/ERLZmZ0t5q6wkJKnqMhzBz8MufZG0ZXsZRzHYYrWJk1TDShwoZfiVWbn2rce4L19/03NdfPRtr2nHzvKc/emdx/d3LDyM4XkaJq+cfm/bY8bqFq1fv6FyOvX+1oHvwefbOru7Y0zcz5q91cn3Tq52bInXKZx9RCGvWp8UlOEsQzpxD6T/05acLVrNap952xtZhP0xWx0+0iY+fnCrjtT1FbQ2389oqStRWanr34n+eflDP00eNTBe09C6rWpeVidoeugYAvcGv8LTaXynTgF0DGRLXuBwA/y5J0T00eaRi6JdU8UmS4qDyuqqwJBTvUMXlkqApuriC9Vdu9UkSBIfk5fPVpZGx4MYuV46oJ+kEY0tOTnr6qEKLpcQNmZh+SJ2ImdjppB56CnnSKS02+RpiJifBU2MEnYC8izsQ2clwI9I+1YYLf3Gtkw8SVgdtm4XAwyNdtX46hDAvXCL2GCmnN3ZetuitjjuuvUr5/0PfKX9DwuFDDfpT17zfga0rz19x8fIFq84TXdXF99Wdtr1n/m5lz4fKh8pLyPrJR8gyV+hdtuva4/Mv2Lj1ih27+lg74MwMf2tPV9/aEPAZUHI97ucl3KK2k5t4PReeOJ319ZfAyRW8pRiS+gUt3aSlD6jpeSPTBS29y6C2pIDWK8yCw0JYeIl7wbKhNGJ1pqWZBQEIyYUcNwVKAXHz0vPBYdBQiw8WTxJRTWOGj2+K1tf/PFpXNzVaf2ojO+KOwcEvTpva/POG6c1EmNrUMqWhpRkIfcaHKAN0OZ81eEfOGnzxWQOjb0jBFAZx/C+zhmCNsJ9hQWsvOLVn0n5GBm1eUrt/zK5jR21o/OiJKy9AhwzKa/6alefjSoYJlXV2dVyL7IwUqpp+Qes1ytH2RjTouvnWlnFKMOP2oSGVpeD1c2ZST4ByefGmpvMavgVOruA1XMnTC0emC1p6V0B9A0u1np977PkV5qi9zXh+BQ8XJOgmziYWsLhqD+1vHQZzli2Dxi8VWsCcbXDIRM6dEpOdxEnL+CQocxLLTDtnDWdWTT4Wyh0nAU7ot8Herhf//uZLf5xv0ulUfvGjOONEDrXMYEgzK+CtE9qVsXpQVixvbB7mnLQ8CVqeut5Qc/0zNdcJKk9oH6byMk5M5VGJGk2mO108BE7wQmekxuJwGFF+vs6WAeDL0umKLHa6drMgI7HQX0YznaWSNBddcwhCLotpRQ5tBcd+ThplmiAy+BMMx2M6XcOLuERnVGvx+3WnH9vn31Wm9Cv3oTPQhPGbvaRDW9Q9dstdd/XVrfR7t8jpaBvqQuejTSZZXeCR145+8+1PDivZbnPyN+hT3SphMXhgNARhQWRMoMKEHQ6/X19RkWu3V+Xr9aEchzvgiMYCATCbfxaNmc3YJNDOmfLEZnDT4VwQvFNiQupwHj45Cp00iOdT56kG4bniI7dDo6KTeT2fSk+Ltyhf7dl5pPfHLSgb4QUvT7nsi2+R+bhTt2fL+U90tDx99FwN5Pu4fbWMBnC3/ZprdiD9/ciByqY1XcvYaf26naXlbOCeHGf7BhavuJhFHD0h/FXwSAVgZP0Zi5ozAMh6jE0ZWF4vsh39sg5pyx2NKqQzEZ2XGU+dFNAgrdc1Ne977elTUafn6kbhr2ed0XJ29tMLqh5sYBENqFX4M4lKD8Q9ehmS1eqmkUWyR8ay7CDxvRTYHVKNZ7qk8YhEdy1YcOklCy+67Pqa0tKaiorSGvGlCzavv+iCDZu7ykKhsrKqKkDwa+HPgkEygQuqIm4KNEUEQjLdBhvobPTrYvM6MzavFyCQ9fpZmoNENQebXw6qkISXvbF5mNVHiE23yjF6xRM27knfvXTUtKZoET+/fAk7F+uray7vKyjOr+KHAr4bGHqI3IN7+G5S+AS7SU0nbeih999Xlbp/qtQllG7Sj/p4jIw7kiaIOqTTySBou5KZB5gLq7jGWhvCumKTs7N6sN5L+p1zkG2h8t3HkHQFCVwRmQhIknSCRC8wvD8WUrffQHtNwbWDkz3iI84XlPdRySFI3luLeVIwEfnuWhIEtNuffHstwOzeZBl/+gzwRczUIGsiggSSZNFlkHRtI0Z+oT8E+bOoWSnwxY/oUzVPdILhSZyRP8ezp2Vz+E4SGJn/ndpNDXwrMFMaMYjsRi+qN9Luoz60qB5QH885cqO31JNM8Ua1DBJFgVlJkOt5SRihMGIaeQcIpN7Ap91gROGgt0eWkkvbi2wunXrfKIyCdLA9wszuRplAgHssUq3uc6/avnXvvku37cGf9hzou3r/LbcAELbTizQXhfm75mXsYF6m6kEvys4gbKuXAofMQuS5LUhtbJnmP9AJy8gdX3yp56m7v+Aps89kZzPacGPqPmctKUf+VkA7vpHbtCsijrgDV9RLQAg9pa0JI9VZmsxW0W/VN5vqlE12xKZeO24nRzp2bfoHPRPEf7z2SBs4vvHEBm8ApCxj83oe25YVSSeAEcaCFtqW8B8j5EX48mN//IKMjge2AeK7BW0S+6EYdkQaJaL3+XI8RW5ntmywWIrSafaLika5cnP12dklBpdLzpRy83Knx0heRt66PJxOMvMy82yFPiiEabFCndlkMzXHbNp2YiNNoxZenyxzKUghO/CtQOhvro/H5DgKdA420DrVfS4oWELdb/7qWvq7BuL7XXhXXu9CVyrtGKN5yj0hZNq9ecn93ynPj9q6VMBLtvjQpG+e6ps7ebnwys5f3ucNFDzwTXgIxqK0Tx5wFVff9zVyT//Q4+XsWgfzjp+0n6MTYDbdHRriMbs/Sh7wQyNfQ04lboD45x8nfd7MPgcMBhzF34tPQRpYGbthFXUmWnBEBixim90k62TJikTRaiW6PJLPDTwBLSYu4RpNwn+8DhpfWI1CfA+zWrZnHP5+zefKBrTh0zXKHkmuzliH39q3rwfXHT/UN3Nu1gWuZ9Wn05u0pyuGRuJWn14KAMTT4QTpzcPp0q6k3PF0dS8BvtMDAcsjIIiIQGKXQLYPAt8FgTU2uvZ8EQDruB3sL/EV7krVDmZIWNNupYoPkxTdQ3NGKoYYgS4mKQ4q76sKS0JxHADfqZupKbq4gq9wuaT6/wCVeR0IAAAAAQAAAAEZmiehT9dfDzz1AAkIAAAAAADJQhegAAAAAMnoSqH7DP2oCo0IjQABAAkAAgAAAAAAAHgBY2BkYODo/buCgYGr9zfPv0quXqAIKrgJAJZXBsIAeAFtkQOsGEEQhv/bnd272rZtG0Ft27ZtW1G9dYMiamrbZlgrqN17M89K8uVfTna/oRs4AwCUGVBCU0zQl7DAlEIZWoPOfhXUs0BbVQAL1CG0ZepQd9STPdUW9dQ61FGN+U5LpOW1pswUpmU0hZj+TGOmWnQ2lPNyV2rEoO/A+mUw0CwATG8cNjkwyXzEYZrG9Of5NUyy+XBY7Q4Hm9a8tgCH/WU4bOcwPfmsjc7GvDcYPWk7StjU2G8qAf5xwHQE6D+zHRXUbqzi96bmrEQNEeim4V965jWnB+ho0sNRHnTn7E5H0V3nQAlaAGsawqkxWKfGhDPoO2Ts/Gdwsk5fIecd011vh9O/OaegHO9toBWAfYLM5JBSxvoNquliyEeDvUucbeXvMd55vIqRtTGMJTnzAkP5bdnsXvTX6VGOPkbfYe+yRgh/6xHoLms6QDmmlvyFPThTB2PEtbczfMbr3XUu1JD7fmqUjaYre68jzpPD3wJIH6QH0RyQ5L6Ui/GeGFqDOZLiPj7iXnpkDsKJ5+TwO3LmEe8JYecb2fcazoXMC/Ed4z0J7EFS3MdH3EuPJJX07gom+ff4/DMcpS1ee85bBLQNGO84cgiqPerpVcghUBEeK/S1jzBBfUZbwUv5X/7bkOlslqCEwJ5TBw4lBFsBJdRuHA4vYk/own8RLYvLrQAAeAEc0jWMJFcQxvFnto/5LjEvHrdbmh2Kji9aPL4839TcKPNAa6mlZUyOmZk6lzbPJ3bo56//Cz+Vaqqrat5rY8x7xnzxl3nvo+27jFnz8c/mI9Nmh2XBdMsilrBitsnD9rI8aiN5DI/jSftC9mIf9pMfIB4kHiI+hWfQY5aPAYYYYYwpcyfpMMX0aZzBWZzDeVygchGXcBlX8ApexWt4HW/gLbzNbnfwLt7DJ/p0TX4+Uucji1hCnY/U+cijVB7D46jzkb3Yh/3kB4gHiYeIT+EZ9JjlY4AhRhhjytxJOkwxfRpncBbncB4XqFzEJVzGFbyCV/EaXscbeAtvs9sdvIv3cjmftWavuWs2mg6byt3ooIsFOyx77Kos2kiWsIK/UVPDOjawiQmO4CgdxnAcJzClz2PVbNKsy2ZzvoncjQ66qE2kNpHaRJawgr9RU8M6NrCJCY6gNpFjOI4TmNIn36TNfGSH5RrssKtyN+59b410iF0sUFO0l2UJtY/8jU9rWMcGNjHBEUypf0z8mm7vZLvZaC/LzdhmV2XBvpBF25IlLJOvEFfRI+NjgCFGGGNK5Rs6Z7Ij/45yNzro4m9Ywzo2sIkJjuBj2ZnvLDdjGxntLLWzLGGZfIW4ih4ZHwMMMcIYUyq1s8xkl97bH0y3JkZyM36j/+58rvTQxwBDjDDGNzyVyX35Ccjd6KCLv2EN69jAJiY4go/lfr05F+Ua7CCzGx10sYA9tiWLxCWs2BfyN+Ia1rGBTUxwBEfpMIbjOIEpfdjHvGaTd9LJb0duRp2S1O1I3Y4sYZl8hbiKHhkfAwwxwhhTKt/QOZPfmY3//Ss3Y5tNpTpL9ZQeGR8DDDHCGN/wbCbdfHO5GbW51OZSm8sSlslXiKvokfExwBAjjDGlUpvLTBY0K5KbiDcT672SbXZY6k7lbnTQxQI1h+1FeZTKY3gcT2KvTWUf9pMZIB4kHiI+xcQzxGfpfA7P4wW8yG4eT/kYYIgRxvgb9TWsYwObmOAITlI/xf7TOIOzOIfzuEDlIi7hMq7gFbyK1/A63sBbeJtvdwfv4j28zyaP8QmVL/imL/ENJ5PJHt3RqtyMbbYlPfQxwBAjjPEN9ZksqkMqN6PuV7bZy7LDtuRudNDFwzx1FI/hcTzJp73Yh/3kB4gHiYeIT+EZ9JjlY4AhRhjjb1TWsI4NbGKCIzjJlCmcxhmcxTmcxwVcxCVcxhW8glfxGl7HG3gLbzPxDt7Fe/gY/+egvq0YCAEoCNa1n+KVyTUl3Q0uIhoe+3DnRfV7nXGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOM8XZouTZemS1OAKcAUYAowBZgCTAHm3x31O7p3vNf5c1iXeBkEAQDFcbsJX0IqFBwK7tyEgkPC3R0K7hrXzsIhePPK/7c77jPM1yxSPua0WmuDzNcuNmuLtmq7sbyfsUu7De/xu9fvvvDNfN3ioN9j5pq0ximd1hmd1TmlX7iky7qiq7qmG3pgXYd6pMd6oqd6pud6oZd6pdd6p/f6oI/6pC/KSxvf9F0/1LFl1naRcwwzrAu7AHNarbW6oEu6rCu6qmu6ob9Y7xu+kbfHH1ZopCk25RVrhXKn4LCO6KiOGfvpd+R3is15xXmVWKGRptgaysQKpUwc1hEdVcpEysTI7xTbKHMcKzTSFDtCmVihkab4z0FdI0QQBAEUbRz6XLh3Lc7VcI/WN54IuxXFS97oH58+MBoclE1usbHHW77wlW985wcHHHLEMSecsUuPXMNRqfzib3pcllj5xd+0lSVW5nNIL3nF6389h+Y5NG3Thja0oQ1taEMb2tCGNrQn+QwjrcwxM93gJre4Y89mvsdb3vGeD3zkE5/5wle+8Z0fHHDIEceccMaOX67wNz3747gObCQAQhCKdjlRzBVD5be7rwAmfOMQsUvPLj279OzSYBks49Ibl97In/HCuNDGO+NOW6qlWqqlWqqlWqqlWqqYUkwpphTzifnEfII92IM92IM92IM92IM92IM92I/D4/A4PA6Pw+PwODwOj8M/f7kaaDXQyt7K3mqglcCVwNVAq4FWA60GWglZCVkJWQlZCVkJWQlZDbQyqhpoNdAPh3NAwCAAwwDM+7b2sg8kCjIO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO47AO67AO67AO67AO67AO67AO67AO67AO67AO67AO67AO63AO53AO53AO53AO53AO53AO53AO53AO53AO53AO53AO5xCHOMQhDnGIQxziEIc4xCEOcYhDHOIQhzjEIQ5xiEMd6lCHOtShDnWoQx3qUIc61KEOdahDHepQhzrUoQ6/h+P6RpIjiKEoyOPvCARUoK9LctP5ZqXTop7q/6H/0H+4P9yfPz82bdm2Y9ee/T355bS3/divDW9reFtDb4beDL0ZejP0ZujN0JuhN0Nvht4MvRl6M/Rm6M3w1of3PVnJSlaykpWsZCUrWclKVrKSlaxkJStZySpWsYpVrGIVq1jFKlaxilWsYhWrWMUqVrGa1axmNatZzWpWs5rVrGY1q1nNalazmtWsYQ1rWMMa1rCGNaxhDWtYwxrWsIY1rGENa1nLWtaylrWsZS1rWcta1rKWtaxlLWtZyzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rEeTf1o6kdTP/84rpMqCKAYhmH8Cfy2JjuLCPiYPDH1Y+rH1I+pH1M/pn5M/Zh6FEZhFEZhFEZhFEZhFEZhFFZhFVZhFVZhFVZhFVZhFVbhFE7hFE7hFE7hFE7hFE7hFCKgCChPHQFlc7I52ZxsTgQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQti5bl63L1mXrsnXZuggoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCyt5GQBFQBPTlwD7OEIaBKAxSOrmJVZa2TsJcwJ6r0/+9sBOGnTDshOF+DndyXG7k7vfh9+n35fft978Thp2wKuqqqKtarmq58cYbb7zzzjvvfPDBBx988sknn3zxxRdfPHnyVPip8FPhp8JPhZ8KP78czLdxBDAMAMFc/bdAk4AERoMS5CpQOW82uWyPHexkJzvZyU52spOd7GQnu9jFLnaxi13sYhe72MVudrOb3exmN7vZzW52s8EGG2ywwQYbbLDBBnvZy172spe97GUve9nLJptssskmm2yyySabbLHFFltsscUWW2yxxX6+7P+rH/qtf6+2Z3u2Z3u2Z3u2Z3u2Z3s+O66jKoYBGASA/iUFeLO2tqfgvhIgVkOshvj/8f/jF8VqiL8dqyG+d4klllhiiSWWWGKJJY444ogjjjjiiCOO+Pua0gPv7paRAHgBLcEDlNxQAADArI3Ydv7Vtm3btm3btm3btm3bD7VvBoIgLXVVqCf0ztXT9dzd3j3cvcX90CN5Snmae/p45np2e356gbeH94HP8Q3x3feH/X38NwJwoHigQ2Ba4GBQCK4NfgxVDE0OnQr7w1nCI8P7wi8jdqR4ZGzkRDQSLRmdH/0UqxTrEVsbux/PHe8b3xh/lgglzESJRJfE6MS6ZChZJzkj+RouCA9GJKQuMhI5hsZRHR2A7kZ/YZWxldhtPDPeFd+IPybyE0OIy2SIrEy2IneSX8mvFKB6UpfodPQYeiOTjmnK3GOzsCPYpexaLjdXiRvBHeJ+8BX5Lvxe/qOACmWEnsJ60SsyYjqxiLhE3CoeE6+LL8RvUlRqJXWThkszpJXSbjkq83JaOZ9cXm4gd5IXKZACK4qSSSmiVFWmq0lVUtOr+dXyagO1oxbRSM3UsmnFtOpaC62nNkqbo7M60HPppfXaemu9j77X4IwUI49RxqhrtDWOGzeM92Y985lFWWWtcdZia4d10/piU3YZu6+91j7rME5xp5szGVAgDcgBioDhYDpYDjaDE+AmeAW+p8R/A5ajfCcAAAABAAAA3QCKABYAWAAFAAIAEAAvAFwAAAEAAQsAAwABeAF9jgNuRAEYhL/aDGoc4DluVNtug5pr8xh7jj3jTpK18pszwBDP9NHTP0IPs1DOexlmtpz3sc9iOe9nmddyPsA8+XI+qI1COZ/kliIXhPkiyDo3vCnG2CaEn0+2lH+gmfIvotowZa3769ULZST4K+cujqTb/j36S4w/QmgDF0tWvalemNWLX+KSMBvYkhQSLG2FZR+afmERIsqPpn7+yvxjfMlsTjlihz3OuZE38bTtlAAa/TAFAHgBbMEDjJYBAADQ9/3nu2zbtm3b5p9t17JdQ7Zt21zmvGXXvJrZe0LA37Cw/3lDEBISIVKUaDFixYmXIJHEkkgqmeRSSCmV1NJIK530Msgok8yyyCqb7HLIKZfc8sgrn/wKKKiwIooqprgSSiqltDLKKqe8CiqqpLIqqqqmuhpqqqW2Ouqqp74GGmqksSaaaqa5FlpqpbU22mqnvQ466qSzLrrqprs9NpthprNWeWeWReZba6ctQYR5QaTplvvhp4VWm+Oyt75bZ5fffvljk71uum6fHnpaopfbervhlvfCHnngof36+Gappx57oq+PPpurv34GGGSgwTYYYpihhhthlJFGG+ODscYbZ4JJJjphoykmm2qaT7445ZkDDnrujRcOOeyY46444qirZtvtnPPOBFG+BtFBTBAbxAXxQYJC7rvjrnv/xpJXmpPDXpqXaWDg6MKZX5ZaVJycX5TK4lpalA8SdnMyMITSRjxp+aVFxaUFqUWZ+UVQQWMobcKUlgYAHQ14sAAAeAFFSzVCLEEQ7fpjH113V1ybGPd1KRyiibEhxt1vsj3ZngE9AIfgBmMR5fVk8qElsRjHOHAYW+Qwyumxct4bKxXkWDEvx7JjdszQNAZcekzi9Zho8oV8NCbnIT/fEXNRJwqmlaemnQMbN8E1OE7Mzb/P/8xzKZrEMA2hl3rQATa0Uxs2bN+2f8M2AEpwj5yQBvklvJ3AqRcEaMKrWq/19eWakl7NsZbyJoNblqlZc7KywcRbRnBjc00FeF6/enoi05EcG62tsXhkPcdk87BHVC+ZXleUPrOsUHaUI2tb4y/8OwbsTEAJAA==) format("woff")}body{margin-top:26px;font-size:16px}*,:after,:before{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}a:focus{outline:thin dotted #333;outline:5px auto -webkit-focus-ring-color;outline-offset:-2px}a:active,a:hover{outline:0}sub,sup{position:relative;font-size:75%;line-height:0;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}blockquote{margin:0}img{max-width:100%;height:auto;vertical-align:middle;border:0;-ms-interpolation-mode:bicubic}table{width:100%}::-moz-selection{background-color:rgba(200,200,200,.8);color:rgba(34,34,34,.8);text-shadow:none}::selection{background-color:rgba(200,200,200,.8);color:rgba(34,34,34,.8);text-shadow:none}.wrap{margin:0 auto}.all-caps{text-transform:uppercase}.image-left{float:none}@media only screen and (min-width:48em){.image-left{float:left}}.image-right{float:none}@media only screen and (min-width:48em){.image-right{float:right}}.unstyled-list{list-style:none;margin-left:0;padding-left:0}.unstyled-list li{list-style-type:none}.inline-list{list-style:none;margin-left:0;padding-left:0}.inline-list li{list-style-type:none;display:inline}a,b,blockquote,em,figure,h1,h2,header,i,img,input,p,q,span,strong{transition:all .2s ease}body{font-family:"Open Sans",Lato,Calibri,Arial,sans-serif;color:rgba(34,34,34,.8)}h1,h2,h3,h4,h5,h6{font-family:"Open Sans",Lato,Calibri,Arial,sans-serif}h1{font-size:28px;font-size:1.75rem}@media only screen and (min-width:48em){h1{font-size:32px;font-size:2rem}}a{text-decoration:none;color:rgba(13,69,198,.8)}a:visited{color:rgba(70,122,243,.8)}a:hover{color:rgba(7,36,102,.8)}a:focus{outline:thin dotted;color:rgba(7,36,102,.8)}a:active,a:hover{outline:0}blockquote{font-family:serif;font-style:italic;border-left:8px solid rgba(187,187,187,.8);padding-left:20px}@media only screen and (min-width:48em){blockquote{margin-left:-28px}}code,kbd,pre,samp,tt{font-family:monospace}li code,p code{line-height:1.5;white-space:nowrap;margin:0 2px;padding:0 5px;border:1px solid #e6e6e6;background-color:#f2f2f2;border-radius:3px}pre{font-size:.9em;line-height:1.5;overflow-x:auto}pre::-webkit-scrollbar{height:12px;background-color:#34362e;border-radius:0 0 4px 4px}pre::-webkit-scrollbar-thumb:horizontal{background-color:#6a6d5d;border-radius:4px}pre{padding:1em;margin-bottom:1.5em;line-height:1.5;color:#d0d0d0;color:#525252;border:1px solid #dbdbdb;background-color:#272822;background-color:#f8f8f8;border-radius:3px;position:relative;margin:1em 0}hr{display:block;margin:1em 0;padding:0;height:1px;border:0;border-top:1px solid #ccc;border-bottom:1px solid #fff}table{border-collapse:collapse;border-spacing:0;margin:20px auto}td,th{border-bottom:1px solid #bbb;text-align:left;padding:10px}th{background-color:#7887ab;color:#fff}tr:nth-child(odd){background-color:#ddd}tr:nth-child(even){background-color:#f5f5f5}body{margin:0;padding:0;width:100%;background-color:#e8e8e8}.entry:after,.entry:before,.hentry:after,.hentry:before{display:table;content:"";line-height:0}.entry:after,.hentry:after{clear:both}.entry h1,.entry h2,.entry h3,.entry h4,.entry h5,.entry h6,.entry li,.entry p,.hentry h1,.hentry h2,.hentry h3,.hentry h4,.hentry h5,.hentry h6,.hentry li,.hentry p{word-wrap:break-word}.entry-content{font-size:16px;font-size:1rem;line-height:1.625;margin-bottom:26px;margin-bottom:1.625rem}@media only screen and (min-width:48em){.entry-content{font-size:17.6px;font-size:1.1rem}}.entry-content li>a,.entry-content p>a{border-bottom:1px dotted rgba(214,225,252,.8)}.entry-content li>a:hover,.entry-content p>a:hover{border-bottom-style:solid}.entry-content li{margin-bottom:7px}.entry-content .footnotes li,.entry-content .footnotes ol,.entry-content .footnotes p{font-size:14px;font-size:.875rem;line-height:1.8571;margin-bottom:26px;margin-bottom:1.625rem}.entry-header{width:100%;overflow:hidden;position:relative}.header-title{text-align:center;margin:30px 0 0}.header-title h1{margin:10px 20px;font-weight:700;font-size:32px;font-size:2rem;color:rgba(85,85,85,.8)}@media only screen and (min-width:48em){.header-title h1{font-size:36px;font-size:2.25rem}}@media only screen and (min-width:62.5em){.header-title h1{font-size:40px;font-size:2.5rem}}.header-title h2{margin:0;font-size:24px;font-size:1.5rem;text-transform:uppercase;color:rgba(85,85,85,.8)}@media only screen and (min-width:48em){.header-title h2{font-size:28px;font-size:1.75rem}}.header-title h3{font-size:18px;font-size:1.125rem}@media only screen and (min-width:48em){.header-title h3{font-size:20px;font-size:1.25rem}}.header-title p{color:rgba(85,85,85,.8)}.header-title{position:absolute;top:0;display:table;margin-top:0;width:100%;height:300px;overflow:hidden}.header-title .header-title-wrap{display:table-cell;vertical-align:middle;margin:0 auto;text-align:center}.header-title h1{margin:10px;font-weight:700;margin:10px 60px;color:#fff;text-shadow:1px 1px 4px rgba(34,34,34,.6)}.header-title h1 a{color:#fff}.header-title h2{margin:0;color:#fff;text-transform:uppercase}@media only screen and (min-width:48em){.header-title h2 a{color:#fff}}.header-title h3{color:#fff}.header-title p{color:#fff}.entry-image{min-height:300px;background-image:linear-gradient(-90deg,#52adaa,#a752ad)}.entry-content{margin:10px 2px 10px 2px;padding:10px 15px;background-color:#fff;box-shadow:0 0 0 0,0 6px 12px rgba(0,0,0,.1);border-radius:3px}@media only screen and (min-width:48em){.entry-content{margin-top:10px;margin-left:10px;margin-right:10px;padding:20px 30px}}@media only screen and (min-width:62.5em){.entry-content{max-width:900px;margin:50px auto 30px auto;padding:50px 60px}.entry-content>p:first-child{font-size:20px;font-size:1.25rem;line-height:1.3;margin-bottom:26px;margin-bottom:1.625rem}}.toc{width:80%;margin:0 auto;padding:20px;border:solid 1px #bbb}.toc .toc-title{margin:0 0 16px;text-align:center;color:#666}.toc li,.toc ul{margin:0}@media only screen and (min-width:48em){.toc{width:60%}}
code span.kw { color: #a71d5d; font-weight: normal; } code span.dt { color: #795da3; } code span.dv { color: #0086b3; } code span.bn { color: #0086b3; } code span.fl { color: #0086b3; } code span.ch { color: #4070a0; } code span.st { color: #183691; } code span.co { color: #969896; font-style: italic; } code span.ot { color: #007020; } </style>
</head>
<body>
<div class="entry-header">
<div class="entry-image">
</div><!-- /.entry-image -->
</div><!-- /.entry-header -->
<div id="main" role="main">
<article class="hentry">
<header class="header-title">
<div class="header-title-wrap">
<h1 class="title toc-ignore entry-title">JHU5, Assignment 1</h1>
<h3 class="author">Bryan Murphy</h3>
<h3 class="date">2023-04-03</h3>
</div><!-- /.header-title-wrap -->
</header>
<div class="entry-content">
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co"># This is our initial setup block, named setup, with include = TRUE so it will show up. </span></span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="co"># First we'll set any global variables we care about...</span></span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a>knitr<span class="sc">::</span>opts_chunk<span class="sc">$</span><span class="fu">set</span>(<span class="at">echo =</span> <span class="cn">TRUE</span>)</span>
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a><span class="fu">options</span>(<span class="at">scipen=</span><span class="dv">999</span>) <span class="co"># This stops knitr from displaying 5 digit numbers as Scientific Notation.</span></span>
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a><span class="co"># And then load our data. </span></span>
<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a>actdata <span class="ot"><-</span> <span class="fu">read.csv</span>(<span class="st">"repdata_data_activity/activity.csv"</span>)</span>
<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a><span class="co"># And the only library call we'll need:</span></span>
<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyverse)</span></code></pre></div>
<pre><code>## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.4.0 ✔ purrr 1.0.1
## ✔ tibble 3.1.8 ✔ dplyr 1.0.10
## ✔ tidyr 1.3.0 ✔ stringr 1.5.0
## ✔ readr 2.1.3 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()</code></pre>
<h2 align="center">
<strong>Q1: What is the mean total number of steps taken per day?
</strong>
</h2>
<p>In order to answer this question, we first have to manipulate our
base dataset, which I’ve named <code>actdata</code> (for <em>“activity
data”</em>) to group by date, then summarize this group date by the
variable “steps”. This will give us our daily step count output, such as
might be tracked by a device like a Fitbit. We see the code to
accomplish this transformation below. In this variable, I’ve also
replaced all <code>NA</code> entries with the number <span class="math inline">\(0\)</span>, to make it possible to use this daily
step count data for subsequent transformations. I’ll thus call our
grouped, cleaned dataset <code>CleanDailySteps</code>. Notice this code
uses the piping operator, made possible because of our call
<code>library(tidyverse)</code> in the setup code chunk at the beginning
of this RMD file.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">group_by</span>(actdata, date) <span class="sc">%>%</span></span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">summarize</span>(<span class="at">DailyStepCount =</span> <span class="fu">sum</span>(steps)) <span class="sc">%>%</span></span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">replace_na</span>(<span class="fu">list</span>(<span class="at">date =</span> <span class="dv">0</span>, <span class="at">DailyStepCount =</span> <span class="dv">0</span>)) <span class="ot">-></span> CleanDailySteps</span></code></pre></div>
<p>Looking at the structure of this file: <code>{r}</code> - we can see
that we have created a <span class="math inline">\(61 by 2\)</span>
tibble with two columns, <em>date</em> and <em>DailyStepCount.</em> This
lets us know that the dataset runs across 61 days, which will be
important when calculating any averages of the step data.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">str</span>(CleanDailySteps)</span></code></pre></div>
<pre><code>## tibble [61 × 2] (S3: tbl_df/tbl/data.frame)
## $ date : chr [1:61] "2012-10-01" "2012-10-02" "2012-10-03" "2012-10-04" ...
## $ DailyStepCount: int [1:61] 0 126 11352 12116 13294 15420 11015 0 12811 9900 ...</code></pre>
<p>We can also look at the <code>head</code> of our dataset to see what
it looks like:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(CleanDailySteps)</span></code></pre></div>
<pre><code>## # A tibble: 6 × 2
## date DailyStepCount
## <chr> <int>
## 1 2012-10-01 0
## 2 2012-10-02 126
## 3 2012-10-03 11352
## 4 2012-10-04 12116
## 5 2012-10-05 13294
## 6 2012-10-06 15420</code></pre>
<p>Let’s look at some descriptive statistics for
<code>DailyStepCount</code>, including, most importantly, <strong>the
mean total number of steps taken per day</strong> across the 61 days in
our dataset.</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="fu">mean</span>(CleanDailySteps<span class="sc">$</span>DailyStepCount) <span class="co">#Mean total steps per day</span></span></code></pre></div>
<pre><code>## [1] 9354.23</code></pre>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">sum</span>(CleanDailySteps<span class="sc">$</span>DailyStepCount)<span class="sc">/</span><span class="dv">61</span> <span class="co">#Calculating mean manually</span></span></code></pre></div>
<pre><code>## [1] 9354.23</code></pre>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="fu">median</span>(CleanDailySteps<span class="sc">$</span>DailyStepCount) <span class="co">#Median total steps per day</span></span></code></pre></div>
<pre><code>## [1] 10395</code></pre>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(CleanDailySteps)</span></code></pre></div>
<pre><code>## date DailyStepCount
## Length:61 Min. : 0
## Class :character 1st Qu.: 6778
## Mode :character Median :10395
## Mean : 9354
## 3rd Qu.:12811
## Max. :21194</code></pre>
<p>We see that the mean number of steps per day is <span class="math inline">\(9,354\)</span>, while the median is <span class="math inline">\(10,395\)</span>, telling us that this data set is
<strong>skewed to the left</strong>, with a number of low or zero step
count days pulling down the mean of the column DailyStepCount.</p>
<div id="a-histogram-of-the-total-number-of-steps-taken-each-day." class="section level4">
<h4><strong>A histogram of the total number of steps taken each
day.</strong></h4>
<p>While we can make a histogram using the bar chart geometry with
ggplot2, we’re going to use <code>geom_histogram</code> to more clearly
demonstrate that we are creating a histogram specifically. We’re going
to use <code>+theme</code> modifiers to remove all vertical gridlines
and reformat the horizontal gridlines to make the chart a little easier
to look at.</p>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(CleanDailySteps, <span class="fu">aes</span>(<span class="at">x=</span>DailyStepCount)) <span class="sc">+</span></span>
<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_histogram</span>(<span class="at">bins =</span> <span class="dv">20</span>, <span class="at">fill =</span> <span class="st">"navajowhite"</span>, <span class="at">color =</span> <span class="st">"midnightblue"</span>) <span class="sc">+</span></span>
<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(<span class="at">title =</span> <span class="st">"Histogram of Daily Step Counts, 20 Bins"</span>, <span class="at">y =</span> <span class="st">"Count"</span>, <span class="at">x =</span> <span class="st">"Total Steps Taken / Day"</span>) <span class="sc">+</span></span>
<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">plot.title =</span> <span class="fu">element_text</span>(<span class="at">hjust =</span> <span class="fl">0.5</span>)) <span class="sc">+</span> </span>
<span id="cb16-5"><a href="#cb16-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"lightskyblue1"</span>),</span>
<span id="cb16-6"><a href="#cb16-6" aria-hidden="true" tabindex="-1"></a> <span class="at">plot.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"lightskyblue1"</span>),</span>
<span id="cb16-7"><a href="#cb16-7" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.ontop =</span> <span class="cn">FALSE</span>) <span class="sc">+</span></span>
<span id="cb16-8"><a href="#cb16-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.grid.major.x =</span> <span class="fu">element_blank</span>(),</span>
<span id="cb16-9"><a href="#cb16-9" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.x =</span> <span class="fu">element_blank</span>(),</span>
<span id="cb16-10"><a href="#cb16-10" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.major.y =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"red4"</span>,</span>
<span id="cb16-11"><a href="#cb16-11" aria-hidden="true" tabindex="-1"></a> <span class="at">size =</span> <span class="fl">0.75</span>,</span>
<span id="cb16-12"><a href="#cb16-12" aria-hidden="true" tabindex="-1"></a> <span class="at">linetype =</span> <span class="dv">2</span>),</span>
<span id="cb16-13"><a href="#cb16-13" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.y =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"red4"</span>,</span>
<span id="cb16-14"><a href="#cb16-14" aria-hidden="true" tabindex="-1"></a> <span class="at">size =</span> <span class="fl">0.25</span>,</span>
<span id="cb16-15"><a href="#cb16-15" aria-hidden="true" tabindex="-1"></a> <span class="at">linetype =</span> <span class="dv">2</span>))</span></code></pre></div>
<p><img src="" /><!-- --></p>
<h2 align="center">
<strong>Q2: What is the average daily activity pattern?</strong>
</h2>
<p>Just from the histogram above, we can see that the daily activity
pattern follows a somewhat normal, albeit very left skewed,
distribution, with relatively fewer unusually high and unusually low
step count days, but a large number of 0 step count days (which could
possibly represent something like days where the person from whom the
data was being collected forgot to wear their Fitbit or other tracking
device).</p>
<p>But we can visualize the daily activity pattern across the hours of
an individual day, as well.</p>
<p><strong>Creating the dataset that will allow use to look at the
activity level across the span of a single day</strong></p>
<p>In order to be able to look at the average activity level per
5-minute interval for an average day, we need to group our original
dataset, <code>actdata</code>, by the variable <code>interval</code>,
sum the total steps for each <code>interval</code> across the 61 days of
the dataset, and then divide this sum by 61 to get the average number of
steps taken during that 5-minute interval on an average day.</p>
<p>The code below shows the steps we need to take to accomplish this
transformation,resulting in the creation of a data frame,
<code>interval_avgs</code>, that we can plot as a time series. Note that
the very first step is removing the <em>NAs</em> from
<code>actdata</code> and replacing them with <span class="math inline">\(0's\)</span> so as to prevent breaking any
subsequent operations.</p>
<p>We continue the practice of using the piping operator
<code>%>%</code> to make the linear nature of the transformation
operations more obvious, and to avoid creating unnecessary intermediate
variables that don’t actually need to exist permanently.</p>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a>CleanActData <span class="ot"><-</span> <span class="fu">replace_na</span>(actdata,<span class="fu">list</span>(<span class="at">steps =</span> <span class="dv">0</span>, <span class="at">date =</span> <span class="dv">0</span>, <span class="at">interval =</span> <span class="dv">0</span> ))</span>
<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a>CleanActData <span class="sc">%>%</span> <span class="fu">select</span>(steps, interval) <span class="sc">%>%</span></span>
<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">group_by</span>(interval) <span class="sc">%>%</span></span>
<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">summarize</span>(<span class="at">TotSteps =</span> <span class="fu">sum</span>(steps)) <span class="sc">%>%</span></span>
<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">AvgSteps =</span> TotSteps<span class="sc">/</span><span class="dv">61</span>) <span class="ot">-></span> interval_avgs </span>
<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(interval_avgs)</span></code></pre></div>
<pre><code>## # A tibble: 6 × 3
## interval TotSteps AvgSteps
## <int> <int> <dbl>
## 1 0 91 1.49
## 2 5 18 0.295
## 3 10 7 0.115
## 4 15 8 0.131
## 5 20 4 0.0656
## 6 25 111 1.82</code></pre>
<p>Now we can use ggplot2 to plot <code>interval_avgs</code> with the
5-minute interval on the x-axis and the average number of steps taken
during that interval on the y-axis.</p>
<div class="sourceCode" id="cb19"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(interval_avgs, <span class="fu">aes</span>(<span class="at">x =</span> interval, <span class="at">y =</span> AvgSteps)) <span class="sc">+</span></span>
<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_line</span>(<span class="at">color =</span> <span class="st">"red2"</span>, <span class="at">linetype =</span> <span class="dv">1</span>) <span class="sc">+</span></span>
<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(<span class="at">title =</span> <span class="st">"Average Steps Taken During Each </span><span class="sc">\n</span><span class="st">Five Minute Interval Across All Days"</span>, <span class="at">y =</span> <span class="st">"Average STeps Taken"</span>, <span class="at">x =</span> <span class="st">"Time of 5-Minute Interval During the Day"</span>) <span class="sc">+</span> </span>
<span id="cb19-4"><a href="#cb19-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"mintcream"</span>),</span>
<span id="cb19-5"><a href="#cb19-5" aria-hidden="true" tabindex="-1"></a> <span class="at">plot.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"mintcream"</span>),</span>
<span id="cb19-6"><a href="#cb19-6" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.ontop =</span> <span class="cn">FALSE</span>) <span class="sc">+</span> </span>
<span id="cb19-7"><a href="#cb19-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">plot.title =</span> <span class="fu">element_text</span>(<span class="at">hjust =</span> <span class="fl">0.5</span>)) <span class="sc">+</span></span>
<span id="cb19-8"><a href="#cb19-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.grid.major.x =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"lightsteelblue4"</span>),</span>
<span id="cb19-9"><a href="#cb19-9" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.x =</span> <span class="fu">element_blank</span>(),</span>
<span id="cb19-10"><a href="#cb19-10" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.major.y =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"lightsteelblue4"</span>,</span>
<span id="cb19-11"><a href="#cb19-11" aria-hidden="true" tabindex="-1"></a> <span class="at">size =</span> <span class="fl">0.75</span>,</span>
<span id="cb19-12"><a href="#cb19-12" aria-hidden="true" tabindex="-1"></a> <span class="at">linetype =</span> <span class="dv">2</span>),</span>
<span id="cb19-13"><a href="#cb19-13" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.y =</span> <span class="fu">element_blank</span>())</span></code></pre></div>
<p><img src="" /><!-- --></p>
<p>We can see that the user(s) this data was collected from tends to
wake up a little bit after 5 A.M. each day,their activity tends to peak
around 8 or 9 am, and they then remain fairly consistently active from
10 am until around 7 pm or so, and after 8 pm their activity drops
dramatically, possibly indicating they tend to go to sleep within a few
hours of that time.</p>
<p>The 5-minute interval, averaged across all the days in the dataset,
that tends to contain the maximum number of steps is 835 am,
corresponding to 179 steps taken during this 5 minute period, on
average. Maybe this time period represents part of the participant(s)
daily commute, for example.</p>
<h1 align="center">
<strong>Imputing missing values</strong>
</h1>
<p>This was the trickest part of the assignment, in my opinion.</p>
<p>Looking at the data, we can see that there are a significant number
of observations in the dataset, exclusively in the “steps” column.</p>
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="fu">sapply</span>(actdata,<span class="cf">function</span>(x) <span class="fu">sum</span>(<span class="fu">is.na</span>(x)))</span></code></pre></div>
<pre><code>## steps date interval
## 2304 0 0</code></pre>
<p>In total, there are 2304 missing values in the dataset, making up
13.11% of the observations in our base dataset <code>actdata</code>.</p>
<p>In our calculations above, we simply replaced the missing values with
<span class="math inline">\(0's\)</span>. This might be a reasonable
assumption at some points, such as for the intervals representing the
times between 2 and 4 am, for example, but there are certainly missing
observations during intervals where the source of the data probably was
taking steps.</p>
<p>A more reasonable but still relatively simple method of filling in
these missing values is by replacing any missing step values with the
average number of steps taken during that 5-minute interval across the
entire dataset. As a bonus, this will replace missing values with <span class="math inline">\(0'\)</span> during intervals where the average
number of steps taken during that interval was <span class="math inline">\(0\)</span>, such as during time periods when the
data source was always asleep.</p>
<p>We can accomplish this with a <code>for</code> loop, creating a new
dataset called <code>imputed</code>. See below.</p>
<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a>imputed <span class="ot"><-</span> actdata</span>
<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb22-3"><a href="#cb22-3" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> (i <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span><span class="dv">17568</span>) {</span>
<span id="cb22-4"><a href="#cb22-4" aria-hidden="true" tabindex="-1"></a> <span class="cf">if</span> ( <span class="fu">is.na</span>(actdata[i,<span class="dv">1</span>]) <span class="sc">==</span> <span class="cn">TRUE</span>) {</span>
<span id="cb22-5"><a href="#cb22-5" aria-hidden="true" tabindex="-1"></a> imputed[i,<span class="dv">1</span>] <span class="ot"><-</span> interval_avgs[interval_avgs<span class="sc">$</span>interval <span class="sc">==</span> actdata[i,<span class="dv">3</span>],<span class="dv">3</span>]</span>
<span id="cb22-6"><a href="#cb22-6" aria-hidden="true" tabindex="-1"></a> }</span>
<span id="cb22-7"><a href="#cb22-7" aria-hidden="true" tabindex="-1"></a>}</span></code></pre></div>
<p>If we look at our new dataset <code>imputed</code>, we can see that
the number of missing values is now 0, which is what we wanted. But if
we look at the summary of <code>imputed</code> and the summary of our
original <code>actdata</code>, we can see that while the mean and median
number of steps taken in a 5-minute interval in the original data was
<em>37.28</em> and <em><span class="math inline">\(0\)</span></em>,
respectively, in the new imputed dataset, the mean number of steps taken
in a 5-minute interval is 36.74, while the median number of steps taken
is still 0 steps. We can see these facts in the two outputs of a summary
function call, below.</p>
<div class="sourceCode" id="cb23"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(imputed<span class="sc">$</span>steps)</span></code></pre></div>
<pre><code>## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 0.00 0.00 36.74 26.00 806.00</code></pre>
<div class="sourceCode" id="cb25"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(actdata<span class="sc">$</span>steps)</span></code></pre></div>
<pre><code>## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.00 0.00 0.00 37.38 12.00 806.00 2304</code></pre>
<p>This result seems confusing until we analyze it a little more
closely. In both datasets, the median is 0, implying that on average,
the source of the data does not move at all during any particular 5
minute interval. The means in both data sets are above 0, because the
source of the data obviously does move at some point, but substituting
imputed data in the place of missing observations brings down the mean
of the <code>steps</code> observations, implying that many of the
missing step values from <code>actdata</code> were replaced with low or
zero step counts.</p>
<p>Looking at the histograms of the step counts of the original dataset
alongside the imputed dataset makes the impact of filling in missing
values with imputed values more obvious.</p>
<p>But before we can do that, we need to replicate the process we used
to create <code>CleanDailySteps</code> to create an
<code>ImputedDailySteps</code> data frame.</p>
<div class="sourceCode" id="cb27"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" aria-hidden="true" tabindex="-1"></a><span class="fu">group_by</span>(imputed, date) <span class="sc">%>%</span></span>
<span id="cb27-2"><a href="#cb27-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">summarize</span>(<span class="at">DailyStepCount =</span> <span class="fu">sum</span>(steps)) <span class="sc">%>%</span></span>
<span id="cb27-3"><a href="#cb27-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">replace_na</span>(<span class="fu">list</span>(<span class="at">date =</span> <span class="dv">0</span>, <span class="at">DailyStepCount =</span> <span class="dv">0</span>)) <span class="ot">-></span> ImputedDailySteps</span>
<span id="cb27-4"><a href="#cb27-4" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(ImputedDailySteps)</span></code></pre></div>
<pre><code>## date DailyStepCount
## Length:61 Min. : 41
## Class :character 1st Qu.: 9354
## Mode :character Median :10395
## Mean :10581
## 3rd Qu.:12811
## Max. :21194</code></pre>
<div class="sourceCode" id="cb29"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1" aria-hidden="true" tabindex="-1"></a><span class="fu">summary</span>(CleanDailySteps)</span></code></pre></div>
<pre><code>## date DailyStepCount
## Length:61 Min. : 0
## Class :character 1st Qu.: 6778
## Mode :character Median :10395
## Mean : 9354
## 3rd Qu.:12811
## Max. :21194</code></pre>
<p>Comparing the summary() outputs for <code>CleanDailySteps</code> and
<code>ImputedDailySteps</code>, we can observe the facts.</p>
<ol style="list-style-type: decimal">
<li>In the original cleaned dataset,the mean number of daily steps taken
was <strong>9354.23 steps</strong>, while the median number of daily
steps taken was <strong>10395 steps.</strong></li>
<li>In the new dataset in which missing values were replaced by imputed
values,the mean number of daily steps taken was <strong>10581
steps</strong>, while the median number of daily steps taken was
<strong>10395 steps.</strong>
<ul>
<li>Thus, by substituting imputed values for missing values and then
calculating daily step counts, we can see that while the original data
set was skewed left, with a mean lower than the median, in the imputed
data set, the daily step counts are skewed right.</li>
<li>This tells us that including imputed values tends to increase the
daily step count values.</li>
</ul></li>
</ol>
<p>We can clearly see the effect of including imputed data on our daily
step counts by comparing the histogram of daily step counts for the
original data frame, <code>CleanDailySteps</code>, with the histogram
created using <code>ImputedDailySteps</code>. See below.</p>
<div class="sourceCode" id="cb31"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb31-1"><a href="#cb31-1" aria-hidden="true" tabindex="-1"></a>p1 <span class="ot"><-</span> <span class="fu">ggplot</span>(CleanDailySteps, <span class="fu">aes</span>(<span class="at">x=</span>DailyStepCount)) <span class="sc">+</span></span>
<span id="cb31-2"><a href="#cb31-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_histogram</span>(<span class="at">bins =</span> <span class="dv">20</span>, <span class="at">fill =</span> <span class="st">"navajowhite"</span>, <span class="at">color =</span> <span class="st">"midnightblue"</span>) <span class="sc">+</span></span>
<span id="cb31-3"><a href="#cb31-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(<span class="at">title =</span> <span class="st">"Histogram of Daily Step Counts Using Cleaned Data, 20 Bins"</span>, <span class="at">y =</span> <span class="st">"Count"</span>, <span class="at">x =</span> <span class="st">"Total Steps Taken / Day"</span>) <span class="sc">+</span></span>
<span id="cb31-4"><a href="#cb31-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">plot.title =</span> <span class="fu">element_text</span>(<span class="at">hjust =</span> <span class="fl">0.5</span>)) <span class="sc">+</span> </span>
<span id="cb31-5"><a href="#cb31-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"lightskyblue1"</span>),</span>
<span id="cb31-6"><a href="#cb31-6" aria-hidden="true" tabindex="-1"></a> <span class="at">plot.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"lightskyblue1"</span>),</span>
<span id="cb31-7"><a href="#cb31-7" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.ontop =</span> <span class="cn">FALSE</span>) <span class="sc">+</span></span>
<span id="cb31-8"><a href="#cb31-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.grid.major.x =</span> <span class="fu">element_blank</span>(),</span>
<span id="cb31-9"><a href="#cb31-9" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.x =</span> <span class="fu">element_blank</span>(),</span>
<span id="cb31-10"><a href="#cb31-10" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.major.y =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"red4"</span>,</span>
<span id="cb31-11"><a href="#cb31-11" aria-hidden="true" tabindex="-1"></a> <span class="at">size =</span> <span class="fl">0.75</span>,</span>
<span id="cb31-12"><a href="#cb31-12" aria-hidden="true" tabindex="-1"></a> <span class="at">linetype =</span> <span class="dv">2</span>),</span>
<span id="cb31-13"><a href="#cb31-13" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.y =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"red4"</span>,</span>
<span id="cb31-14"><a href="#cb31-14" aria-hidden="true" tabindex="-1"></a> <span class="at">size =</span> <span class="fl">0.25</span>,</span>
<span id="cb31-15"><a href="#cb31-15" aria-hidden="true" tabindex="-1"></a> <span class="at">linetype =</span> <span class="dv">2</span>))</span>
<span id="cb31-16"><a href="#cb31-16" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb31-17"><a href="#cb31-17" aria-hidden="true" tabindex="-1"></a>p2 <span class="ot"><-</span> <span class="fu">ggplot</span>(ImputedDailySteps, <span class="fu">aes</span>(<span class="at">x=</span>DailyStepCount)) <span class="sc">+</span></span>
<span id="cb31-18"><a href="#cb31-18" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_histogram</span>(<span class="at">bins =</span> <span class="dv">20</span>, <span class="at">fill =</span> <span class="st">"navajowhite"</span>, <span class="at">color =</span> <span class="st">"midnightblue"</span>) <span class="sc">+</span></span>
<span id="cb31-19"><a href="#cb31-19" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(<span class="at">title =</span> <span class="st">"Histogram of Daily Step Counts Using Imputed Data, 20 Bins"</span>, <span class="at">y =</span> <span class="st">"Count"</span>, <span class="at">x =</span> <span class="st">"Total Steps Taken / Day"</span>) <span class="sc">+</span></span>
<span id="cb31-20"><a href="#cb31-20" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">plot.title =</span> <span class="fu">element_text</span>(<span class="at">hjust =</span> <span class="fl">0.5</span>)) <span class="sc">+</span> </span>
<span id="cb31-21"><a href="#cb31-21" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"lightskyblue1"</span>),</span>
<span id="cb31-22"><a href="#cb31-22" aria-hidden="true" tabindex="-1"></a> <span class="at">plot.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"lightskyblue1"</span>),</span>
<span id="cb31-23"><a href="#cb31-23" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.ontop =</span> <span class="cn">FALSE</span>) <span class="sc">+</span></span>
<span id="cb31-24"><a href="#cb31-24" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.grid.major.x =</span> <span class="fu">element_blank</span>(),</span>
<span id="cb31-25"><a href="#cb31-25" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.x =</span> <span class="fu">element_blank</span>(),</span>
<span id="cb31-26"><a href="#cb31-26" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.major.y =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"red4"</span>,</span>
<span id="cb31-27"><a href="#cb31-27" aria-hidden="true" tabindex="-1"></a> <span class="at">size =</span> <span class="fl">0.75</span>,</span>
<span id="cb31-28"><a href="#cb31-28" aria-hidden="true" tabindex="-1"></a> <span class="at">linetype =</span> <span class="dv">2</span>),</span>
<span id="cb31-29"><a href="#cb31-29" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.y =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"red4"</span>,</span>
<span id="cb31-30"><a href="#cb31-30" aria-hidden="true" tabindex="-1"></a> <span class="at">size =</span> <span class="fl">0.25</span>,</span>
<span id="cb31-31"><a href="#cb31-31" aria-hidden="true" tabindex="-1"></a> <span class="at">linetype =</span> <span class="dv">2</span>))</span>
<span id="cb31-32"><a href="#cb31-32" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb31-33"><a href="#cb31-33" aria-hidden="true" tabindex="-1"></a>gridExtra<span class="sc">::</span><span class="fu">grid.arrange</span>(p1, p2)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<p>We can see that the <strong>impact of imputing missing data on the
estimates of the total daily number of steps</strong> is to decrease the
number of days in which the daily step count is <span class="math inline">\(0\)</span>, and instead many of these
formerly-<span class="math inline">\(0\)</span> days become days
clustered approximately aroun the center of the data.</p>
<h2 align="center">
<strong>Differences in activity patterns between weekdays and
weekends</strong>
</h2>
<p>First, we will create a new factor variable in our dataset with two
levels, weekday and weekend, indicating whether a given date is a
weekday or a weekend day.</p>
<p>First, looking at our dataset <code>imputed</code>, we see that the
<code>date</code> column is currently being considered a character
string column, and we want it as a dates column. Let’s create a new
dataset called imputed_dates in which <code>date</code> will be seen as
date data.</p>
<div class="sourceCode" id="cb32"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb32-1"><a href="#cb32-1" aria-hidden="true" tabindex="-1"></a><span class="fu">glimpse</span>(imputed)</span></code></pre></div>
<pre><code>## Rows: 17,568
## Columns: 3
## $ steps <dbl> 1.49180328, 0.29508197, 0.11475410, 0.13114754, 0.06557377, 1…
## $ date <chr> "2012-10-01", "2012-10-01", "2012-10-01", "2012-10-01", "2012…
## $ interval <int> 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 100, 105, 110, …</code></pre>
<div class="sourceCode" id="cb34"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb34-1"><a href="#cb34-1" aria-hidden="true" tabindex="-1"></a>imputed_dates <span class="ot"><-</span> imputed</span>
<span id="cb34-2"><a href="#cb34-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb34-3"><a href="#cb34-3" aria-hidden="true" tabindex="-1"></a>imputed_dates <span class="ot"><-</span> imputed_dates <span class="sc">%>%</span></span>
<span id="cb34-4"><a href="#cb34-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate_at</span>(<span class="dv">2</span>,as.Date.character)</span>
<span id="cb34-5"><a href="#cb34-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb34-6"><a href="#cb34-6" aria-hidden="true" tabindex="-1"></a><span class="fu">glimpse</span>(imputed_dates)</span></code></pre></div>
<pre><code>## Rows: 17,568
## Columns: 3
## $ steps <dbl> 1.49180328, 0.29508197, 0.11475410, 0.13114754, 0.06557377, 1…
## $ date <date> 2012-10-01, 2012-10-01, 2012-10-01, 2012-10-01, 2012-10-01, …
## $ interval <int> 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 100, 105, 110, …</code></pre>
<p>Now that <code>date</code> is considered a date vector, we can create
a vector of the same number of rows as actdata (n = 17,568) telling us
the name of the day of the week associated with each row, then create a
logical vector for TRUE if the day of the week is a weekday and FALSE if
a weekend, convert that logical vector into a factor vector with
ifelse(), and finally bind that factor vector to
<code>imputed_dates</code>.</p>
<div class="sourceCode" id="cb36"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb36-1"><a href="#cb36-1" aria-hidden="true" tabindex="-1"></a>daysoftheweek <span class="ot"><-</span> <span class="fu">weekdays</span>(imputed_dates[[<span class="dv">2</span>]])</span>
<span id="cb36-2"><a href="#cb36-2" aria-hidden="true" tabindex="-1"></a>day_type <span class="ot"><-</span> daysoftheweek <span class="sc">%in%</span> <span class="fu">c</span>(<span class="st">"Monday"</span>,<span class="st">"Tuesday"</span>,<span class="st">"Wednesday"</span>,<span class="st">"Thursday"</span>,<span class="st">"Friday"</span>)</span>
<span id="cb36-3"><a href="#cb36-3" aria-hidden="true" tabindex="-1"></a>day_type <span class="ot"><-</span> <span class="fu">as.factor</span>(<span class="fu">ifelse</span>(day_type, <span class="st">"weekday"</span>, <span class="st">"weekend"</span>))</span>
<span id="cb36-4"><a href="#cb36-4" aria-hidden="true" tabindex="-1"></a>imputed_dates <span class="ot"><-</span> <span class="fu">cbind</span>(imputed_dates, day_type)</span>
<span id="cb36-5"><a href="#cb36-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb36-6"><a href="#cb36-6" aria-hidden="true" tabindex="-1"></a><span class="fu">glimpse</span>(imputed_dates)</span></code></pre></div>
<pre><code>## Rows: 17,568
## Columns: 4
## $ steps <dbl> 1.49180328, 0.29508197, 0.11475410, 0.13114754, 0.06557377, 1…
## $ date <date> 2012-10-01, 2012-10-01, 2012-10-01, 2012-10-01, 2012-10-01, …
## $ interval <int> 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 100, 105, 110, …
## $ day_type <fct> weekday, weekday, weekday, weekday, weekday, weekday, weekday…</code></pre>
<div class="sourceCode" id="cb38"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb38-1"><a href="#cb38-1" aria-hidden="true" tabindex="-1"></a><span class="fu">levels</span>(imputed_dates<span class="sc">$</span>day_type)</span></code></pre></div>
<pre><code>## [1] "weekday" "weekend"</code></pre>
<p>Having done that, we now have to process our new raw dataset
<code>imputed_dates</code> to collect and group the data by intervals,
and finally we can make a panel plot containing a time-series plot of
the 5-minute intervals on the x-axis and the average number of steps
taken, averaged across all weekdays or weekendays, on the y-axis.</p>
<div class="sourceCode" id="cb40"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb40-1"><a href="#cb40-1" aria-hidden="true" tabindex="-1"></a>imputed_dates <span class="sc">%>%</span> <span class="fu">filter</span>(day_type <span class="sc">==</span> <span class="st">"weekday"</span>) <span class="sc">%>%</span></span>
<span id="cb40-2"><a href="#cb40-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">select</span>(steps, interval) <span class="ot">-></span> imputed_weekdays</span>
<span id="cb40-3"><a href="#cb40-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb40-4"><a href="#cb40-4" aria-hidden="true" tabindex="-1"></a>imputed_dates <span class="sc">%>%</span> <span class="fu">filter</span>(day_type <span class="sc">==</span> <span class="st">"weekend"</span>) <span class="sc">%>%</span></span>
<span id="cb40-5"><a href="#cb40-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">select</span>(steps, interval) <span class="ot">-></span> imputed_weekends</span>
<span id="cb40-6"><a href="#cb40-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb40-7"><a href="#cb40-7" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb40-8"><a href="#cb40-8" aria-hidden="true" tabindex="-1"></a><span class="fu">nrow</span>(imputed_weekdays) <span class="sc">+</span> <span class="fu">nrow</span>(imputed_weekends) <span class="sc">==</span> <span class="fu">nrow</span>(actdata)</span></code></pre></div>
<pre><code>## [1] TRUE</code></pre>
<div class="sourceCode" id="cb42"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb42-1"><a href="#cb42-1" aria-hidden="true" tabindex="-1"></a>imputed_weekdays <span class="sc">%>%</span> </span>
<span id="cb42-2"><a href="#cb42-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">group_by</span>(interval) <span class="sc">%>%</span></span>
<span id="cb42-3"><a href="#cb42-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">summarize</span>(<span class="at">TotSteps =</span> <span class="fu">sum</span>(steps)) <span class="sc">%>%</span></span>
<span id="cb42-4"><a href="#cb42-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">AvgSteps =</span> TotSteps<span class="sc">/</span><span class="dv">61</span>) <span class="ot">-></span> imputed_weekdays_dailycounts</span>
<span id="cb42-5"><a href="#cb42-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb42-6"><a href="#cb42-6" aria-hidden="true" tabindex="-1"></a>imputed_weekends <span class="sc">%>%</span> </span>
<span id="cb42-7"><a href="#cb42-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">group_by</span>(interval) <span class="sc">%>%</span></span>
<span id="cb42-8"><a href="#cb42-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">summarize</span>(<span class="at">TotSteps =</span> <span class="fu">sum</span>(steps)) <span class="sc">%>%</span></span>
<span id="cb42-9"><a href="#cb42-9" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">AvgSteps =</span> TotSteps<span class="sc">/</span><span class="dv">61</span>) <span class="ot">-></span> imputed_weekends_dailycounts</span></code></pre></div>
<p>Now we can finally create our plots.</p>
<div class="sourceCode" id="cb43"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb43-1"><a href="#cb43-1" aria-hidden="true" tabindex="-1"></a>p9 <span class="ot"><-</span> <span class="fu">ggplot</span>(imputed_weekdays_dailycounts, <span class="fu">aes</span>(<span class="at">x =</span> interval, <span class="at">y =</span> AvgSteps)) <span class="sc">+</span></span>
<span id="cb43-2"><a href="#cb43-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_line</span>(<span class="at">color =</span> <span class="st">"red2"</span>, <span class="at">linetype =</span> <span class="dv">1</span>) <span class="sc">+</span></span>
<span id="cb43-3"><a href="#cb43-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(<span class="at">title =</span> <span class="st">"Average Steps Taken During Each </span><span class="sc">\n</span><span class="st">Five Minute Interval Across All Days </span><span class="sc">\n</span><span class="st"> on *Weekdays*"</span>, <span class="at">y =</span> <span class="st">"Average STeps Taken"</span>, <span class="at">x =</span> <span class="st">"Time of 5-Minute Interval During the Day"</span>) <span class="sc">+</span> </span>
<span id="cb43-4"><a href="#cb43-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"mintcream"</span>),</span>
<span id="cb43-5"><a href="#cb43-5" aria-hidden="true" tabindex="-1"></a> <span class="at">plot.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"mintcream"</span>),</span>
<span id="cb43-6"><a href="#cb43-6" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.ontop =</span> <span class="cn">FALSE</span>) <span class="sc">+</span> </span>
<span id="cb43-7"><a href="#cb43-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">plot.title =</span> <span class="fu">element_text</span>(<span class="at">hjust =</span> <span class="fl">0.5</span>)) <span class="sc">+</span></span>
<span id="cb43-8"><a href="#cb43-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.grid.major.x =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"lightsteelblue4"</span>),</span>
<span id="cb43-9"><a href="#cb43-9" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.x =</span> <span class="fu">element_blank</span>(),</span>
<span id="cb43-10"><a href="#cb43-10" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.major.y =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"lightsteelblue4"</span>,</span>
<span id="cb43-11"><a href="#cb43-11" aria-hidden="true" tabindex="-1"></a> <span class="at">size =</span> <span class="fl">0.75</span>,</span>
<span id="cb43-12"><a href="#cb43-12" aria-hidden="true" tabindex="-1"></a> <span class="at">linetype =</span> <span class="dv">2</span>),</span>
<span id="cb43-13"><a href="#cb43-13" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.y =</span> <span class="fu">element_blank</span>())</span>
<span id="cb43-14"><a href="#cb43-14" aria-hidden="true" tabindex="-1"></a>p10 <span class="ot"><-</span> <span class="fu">ggplot</span>(imputed_weekends_dailycounts, <span class="fu">aes</span>(<span class="at">x =</span> interval, <span class="at">y =</span> AvgSteps)) <span class="sc">+</span></span>
<span id="cb43-15"><a href="#cb43-15" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_line</span>(<span class="at">color =</span> <span class="st">"red2"</span>, <span class="at">linetype =</span> <span class="dv">1</span>) <span class="sc">+</span></span>
<span id="cb43-16"><a href="#cb43-16" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(<span class="at">title =</span> <span class="st">"Average Steps Taken During Each </span><span class="sc">\n</span><span class="st">Five Minute Interval Across All Days </span><span class="sc">\n</span><span class="st"> on *Weekends*"</span>, <span class="at">y =</span> <span class="st">"Average STeps Taken"</span>, <span class="at">x =</span> <span class="st">"Time of 5-Minute Interval During the Day"</span>) <span class="sc">+</span> </span>
<span id="cb43-17"><a href="#cb43-17" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"mintcream"</span>),</span>
<span id="cb43-18"><a href="#cb43-18" aria-hidden="true" tabindex="-1"></a> <span class="at">plot.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"mintcream"</span>),</span>
<span id="cb43-19"><a href="#cb43-19" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.ontop =</span> <span class="cn">FALSE</span>) <span class="sc">+</span> </span>
<span id="cb43-20"><a href="#cb43-20" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">plot.title =</span> <span class="fu">element_text</span>(<span class="at">hjust =</span> <span class="fl">0.5</span>)) <span class="sc">+</span></span>
<span id="cb43-21"><a href="#cb43-21" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.grid.major.x =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"lightsteelblue4"</span>),</span>
<span id="cb43-22"><a href="#cb43-22" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.x =</span> <span class="fu">element_blank</span>(),</span>
<span id="cb43-23"><a href="#cb43-23" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.major.y =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"lightsteelblue4"</span>,</span>
<span id="cb43-24"><a href="#cb43-24" aria-hidden="true" tabindex="-1"></a> <span class="at">size =</span> <span class="fl">0.75</span>,</span>
<span id="cb43-25"><a href="#cb43-25" aria-hidden="true" tabindex="-1"></a> <span class="at">linetype =</span> <span class="dv">2</span>),</span>
<span id="cb43-26"><a href="#cb43-26" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.y =</span> <span class="fu">element_blank</span>())</span>
<span id="cb43-27"><a href="#cb43-27" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb43-28"><a href="#cb43-28" aria-hidden="true" tabindex="-1"></a>gridExtra<span class="sc">::</span><span class="fu">grid.arrange</span>(p9,p10)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<p>To make the data a little easier to interpret visually, we can try
replacing <code>geom_line</code> with <code>geom_smooth</code> with a
low <code>span =</code> setting.</p>
<div class="sourceCode" id="cb44"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb44-1"><a href="#cb44-1" aria-hidden="true" tabindex="-1"></a>p11 <span class="ot"><-</span> <span class="fu">ggplot</span>(imputed_weekdays_dailycounts, <span class="fu">aes</span>(<span class="at">x =</span> interval, <span class="at">y =</span> AvgSteps)) <span class="sc">+</span></span>
<span id="cb44-2"><a href="#cb44-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_smooth</span>(<span class="at">color =</span> <span class="st">"red2"</span>, <span class="at">linetype =</span> <span class="dv">1</span>, <span class="at">span =</span> <span class="fl">0.125</span>) <span class="sc">+</span></span>
<span id="cb44-3"><a href="#cb44-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(<span class="at">title =</span> <span class="st">"Average Steps Taken During Each </span><span class="sc">\n</span><span class="st">Five Minute Interval Across All Days </span><span class="sc">\n</span><span class="st"> on *Weekdays*, Smoothed"</span>, <span class="at">y =</span> <span class="st">"Average STeps Taken"</span>, <span class="at">x =</span> <span class="st">"Time of 5-Minute Interval During the Day"</span>) <span class="sc">+</span> </span>
<span id="cb44-4"><a href="#cb44-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"mintcream"</span>),</span>
<span id="cb44-5"><a href="#cb44-5" aria-hidden="true" tabindex="-1"></a> <span class="at">plot.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"mintcream"</span>),</span>
<span id="cb44-6"><a href="#cb44-6" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.ontop =</span> <span class="cn">FALSE</span>) <span class="sc">+</span> </span>
<span id="cb44-7"><a href="#cb44-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">plot.title =</span> <span class="fu">element_text</span>(<span class="at">hjust =</span> <span class="fl">0.5</span>)) <span class="sc">+</span></span>
<span id="cb44-8"><a href="#cb44-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.grid.major.x =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"lightsteelblue4"</span>),</span>
<span id="cb44-9"><a href="#cb44-9" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.x =</span> <span class="fu">element_blank</span>(),</span>
<span id="cb44-10"><a href="#cb44-10" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.major.y =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"lightsteelblue4"</span>,</span>
<span id="cb44-11"><a href="#cb44-11" aria-hidden="true" tabindex="-1"></a> <span class="at">size =</span> <span class="fl">0.75</span>,</span>
<span id="cb44-12"><a href="#cb44-12" aria-hidden="true" tabindex="-1"></a> <span class="at">linetype =</span> <span class="dv">2</span>),</span>
<span id="cb44-13"><a href="#cb44-13" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.y =</span> <span class="fu">element_blank</span>())</span>
<span id="cb44-14"><a href="#cb44-14" aria-hidden="true" tabindex="-1"></a>p12 <span class="ot"><-</span> <span class="fu">ggplot</span>(imputed_weekends_dailycounts, <span class="fu">aes</span>(<span class="at">x =</span> interval, <span class="at">y =</span> AvgSteps)) <span class="sc">+</span></span>
<span id="cb44-15"><a href="#cb44-15" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_smooth</span>(<span class="at">color =</span> <span class="st">"red2"</span>, <span class="at">linetype =</span> <span class="dv">1</span>, <span class="at">span =</span> <span class="fl">0.125</span>) <span class="sc">+</span></span>
<span id="cb44-16"><a href="#cb44-16" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(<span class="at">title =</span> <span class="st">"Average Steps Taken During Each </span><span class="sc">\n</span><span class="st">Five Minute Interval Across All Days </span><span class="sc">\n</span><span class="st"> on *Weekends*, Smoothed"</span>, <span class="at">y =</span> <span class="st">"Average STeps Taken"</span>, <span class="at">x =</span> <span class="st">"Time of 5-Minute Interval During the Day"</span>) <span class="sc">+</span> </span>
<span id="cb44-17"><a href="#cb44-17" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"mintcream"</span>),</span>
<span id="cb44-18"><a href="#cb44-18" aria-hidden="true" tabindex="-1"></a> <span class="at">plot.background =</span> <span class="fu">element_rect</span>(<span class="at">fill =</span> <span class="st">"mintcream"</span>),</span>
<span id="cb44-19"><a href="#cb44-19" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.ontop =</span> <span class="cn">FALSE</span>) <span class="sc">+</span> </span>
<span id="cb44-20"><a href="#cb44-20" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">plot.title =</span> <span class="fu">element_text</span>(<span class="at">hjust =</span> <span class="fl">0.5</span>)) <span class="sc">+</span></span>
<span id="cb44-21"><a href="#cb44-21" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">panel.grid.major.x =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"lightsteelblue4"</span>),</span>
<span id="cb44-22"><a href="#cb44-22" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.x =</span> <span class="fu">element_blank</span>(),</span>
<span id="cb44-23"><a href="#cb44-23" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.major.y =</span> <span class="fu">element_line</span>(<span class="at">color =</span> <span class="st">"lightsteelblue4"</span>,</span>
<span id="cb44-24"><a href="#cb44-24" aria-hidden="true" tabindex="-1"></a> <span class="at">size =</span> <span class="fl">0.75</span>,</span>
<span id="cb44-25"><a href="#cb44-25" aria-hidden="true" tabindex="-1"></a> <span class="at">linetype =</span> <span class="dv">2</span>),</span>
<span id="cb44-26"><a href="#cb44-26" aria-hidden="true" tabindex="-1"></a> <span class="at">panel.grid.minor.y =</span> <span class="fu">element_blank</span>())</span>
<span id="cb44-27"><a href="#cb44-27" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb44-28"><a href="#cb44-28" aria-hidden="true" tabindex="-1"></a>gridExtra<span class="sc">::</span><span class="fu">grid.arrange</span>(p11,p12)</span></code></pre></div>
<pre><code>## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula = 'y ~ x'</code></pre>
<p><img src="" /><!-- --></p>
<p>Looking at these plots, we can see that, on weekdays, the source of
our data starts becoming active (at least insofar as they start taking
measured steps) a little earlier, has a generally lower average level of
activity during the day, and stops being active earlier. This
intuitively matches with the concept that people might want to stay up
later, potentially going out to various social or entertainment
activities, on the weekends. In the future, it might make more sense for
the sake of this analysis to also consider counting Friday as a weekend
day, as the following day, Saturday, is also a weekend day, and we might
expect Friday night’s activity levels to be different from Monday
through Thursday night’s activity levels.</p>
</div>
</div><!-- /.entry-content -->
</article>
</div><!-- /#main -->
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>