Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use a sudoku-solving algorithm #85

Open
Bartleby2718 opened this issue Nov 19, 2018 · 4 comments
Open

Use a sudoku-solving algorithm #85

Bartleby2718 opened this issue Nov 19, 2018 · 4 comments
Labels
enhancement New feature or request

Comments

@Bartleby2718
Copy link
Owner

Bartleby2718 commented Nov 19, 2018

If a value x must be in one of m decks, say Deck 3, and if there are n numbers that can be in Deck 3, what is the probability that x is in Deck 3? It's complicated. Neither 1/m nor 1/n might be the answer. Since a value in a card affects the values in the other decks, you actually have to count the number of possible cases. It's like solving a sudoku. This issue will add on to #94, although not anytime soon.

@Bartleby2718 Bartleby2718 added the enhancement New feature or request label Nov 19, 2018
@Bartleby2718 Bartleby2718 self-assigned this Nov 19, 2018
@Bartleby2718
Copy link
Owner Author

Actually, it's just logic, not a sudoku-solving algorithm, but anyway, let me give you a concrete example.
If the rightmost decks, none of which is open, are:

  • Deck 7: 10, ?, ?
  • Deck 8: 12, ?, ?
  • Deck 9: 13, ?, ?

Deck 8 contains at least one 11, and Deck 9 contains at least one 13 besides its delegate.
In fact, the possibilities are:

Case Deck 8 Deck 9
1 12, 11, 11 13, 13, 12
2 12, 11, 11 13, 12, 13
3 12, 11, 12 13, 13, 11
4 12, 12, 11 13, 13, 11
5 12, 11, 12 13, 11, 13
6 12, 12, 11 13, 11, 13

For done, both Deck 8 and Deck 9 must be opened, so maybe you should look for other numbers first. On the other hand, the big sums can be used to dare some of the biggest decks the opponent has. Finally, there is a guarantee that joker is in neither of Deck 8 and Deck 9.

@Bartleby2718
Copy link
Owner Author

Some links on sudoku-solving algorithms:

The problem is that I have no idea how I should implement this... (because I haven't looked into it yet)

@Bartleby2718
Copy link
Owner Author

Another example:

  • Deck 1: 2, ?, ?
  • Deck 2: 4, ?, ?
    ...
  • Deck 9: 13(Joker), 2, 3

In this case, Deck 1 has to be {2, 1, 1} and Deck 2 has to be {4, 4, 3} because it is the only possible case, although it may be evident at first glance.

@Bartleby2718
Copy link
Owner Author

What concerns me is that this is clearly a logical but may not worth the computing time.

@Bartleby2718 Bartleby2718 removed their assignment Mar 12, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request
Projects
None yet
Development

No branches or pull requests

1 participant